prof. dr hab. Franciszek Hugon Szafraniec

Jednostki:

  • Wydział Matematyki i Informatyki UJ
  • Instytut Matematyki
  • Katedra Analizy Funkcjonalnej

Publikacje:

141.
Katarzyna Górska, Andrzej Horzela, Franciszek Hugon Szafraniec
Coherence, squeezing and entanglement - an example of peaceful coexistence vol. Springer Proceedings in Physics (2018), "Coherent States and their applications: A contemporary panorama", Springer
140.
Dissymmetrising Inner Product Spaces vol. Operator Theory: Advances and Applications (2018), "Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations ", Birkhäuser
137.
Przypadek Stanisława Zaremby - oportunizm czy nonszalancja, Kwartalnik Historii Nauki i Techniki vol. 61 (2016), 117-127
134.
Franciszek Hugon Szafraniec, Fabio Bagarello, J.-P. Gazeau, Miroslav Znojil
Operators of the quantum harmonic oscillator and its relatives, (2015), "Non-selfadjoint operators in quantum physics: mathematical aspects", John Wiley & Sons (połączony z Blackwell Publishing oraz Van Nostrand Reinhold)
128.
Hendrik S.V. de Snoo, Seppo Hassi, Franciszek Hugon Szafraniec
Normal intermediate extensions of symmetric relations, Acta Scientiarum Mathematicarum (2014), 195-232
127.
Andrzej Horzela, Franciszek Hugon Szafraniec
A measure free approach to coherent states refined vol. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol 11 (2013), "Symmetries and Groups in Contemporary Physics; ISBN: 978-981-4518-54-3 ", World Scientific Publishing
126.
David R. Larson, Franciszek Hugon Szafraniec
Framings and dilations, Acta Scientiarum Mathematicarum vol. 79 (2013), 529-543
125.
Naîmark dilations and Naîmark extensions in favour of moment problems vol. London Mathematical Society Lecture Note Series 404, pp. 295-308, S. Hassi, H.S.V. De Snoo and F.H. Szafraniec (eds.) (2012), "Operator methods for boundary value problems", Cambridge University Press
124.
Hendrik S.V. de Snoo, Seppo Hassi, Franciszek Hugon Szafraniec
John Williams Calkin: a short biography vol. London Mathematical Society Lecture Note Series 404, pp. 1-2, S. Hassi, H.S.V. De Snoo and F.H. Szafraniec (eds.) (2012), "Operator methods for boundary value problems", Cambridge University Press
123.
Operator methods for boundary value problems vol. London Mathematical Society Lecture Note Series 404 (coeditor, with Seppo Hassi and Hendrik S.V. de Snoo) , Cambridge University Press, 2012
115.
109.
Two-sided weighted shifts are `almost Krein' normal vol. 188 Oper. Theory Adv. Appl. (2008), "Spectral theory in inner product spaces and applications", Birkhäuser
107.
q-positive definiteness and related operators, J. MATH. ANAL. APPL. 329 (2007), 987–997
106.
104.
Franciszek Hugon Szafraniec, S.Hassi,Z.Sebestyén,H.S.V.deSnoo
102.
Bounded normal operators in Pontryagin spaces, OPER. THEORY ADV. APPL. 162 (2006), 231-251
99.
Subnormality and cyclicity, BANACH CENTER PUBL. 67 (2005), 349-356
96.
Favard's theorem modulo an ideal, OPER. THEORY ADV. APPL. 157 (2005), 301-310
95.
94.
Notes on q-deformed operators, STUDIA MATH. 165 (2004), 295-301
93.
92.
Franciszek Hugon Szafraniec, FranciscoMarcellán
Integral representations on equipotential and harmonic sets, BULL. BELG. MATH. SOC. SIMON STEVIN 11 (2004), 457-468
90.
The dual of a formula of Viskov, BULL. KOREAN MATH. SOC. 40 (2003), 699-701
86.
A converse of the Kramer sampling theorem, SAMPL. THEORY SIGNAL IMAGE PROCESS. 1 (2002), 53-61
83.
On matrix integration of matrix polynomials, PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON ORTHOGONAL POLYNOMIALS, SPECIAL FUNCTIONS AND THEIR APPLICATIONS (PATRAS, 1999). J. Comput. Appl. Math. 133 (2001), no. 1-2, 611--621
82.
A matrix algorithm towards solving the moment problem of Sobolev type, LINEAR ALGEBRA APPL. 331 (2001), no. 1-3, 155--164
81.
Duality in the quantum harmonic oscillator, SYMMETRIES AND INTEGRABILITY OF DIFFERENCE EQUATIONS (TOKYO, 2000). J. Phys. A 34 (2001), no. 48, 10487--10492
80.
Subnormality in the quantum harmonic oscillator, COMM. MATH. PHYS. 210 (2000), no. 2, 323--334
79.
Franciszek Hugon Szafraniec, J.Beckers,N.Debergh
Oscilator-like Hamiltonians and sqeezing, INTERNAT. J. THEORET. PHYS. 36 (2000), no. 6, 1515--1527
77.
The Sobolev-type moment problem, PROC. AMER. MATH. SOC. 128 (2000), no. 8, 2309--2317
76.
Franciszek Hugon Szafraniec, J.Becker,N.Debergh
A proposal of new sets of squeezed states, PHYS. LETT. A 243 (1998), no. 5-6, 256--260
74.
Franciszek Hugon Szafraniec, J.Janas,Cz.Olech
W3odzimierz Mlak (1931--1994), VOLUME DEDICATED TO THE MEMORY OF W3ODZIMIERZ MLAK. ANN. POLON. MATH. 66 (1997), 1--9
73.
$Csp infty$-vectors and boundedness, VOLUME DEDICATED TO THE MEMORY OF W3ODZIMIERZ MLAK. ANN. POLON. MATH. 66 (1997), 223--238
72.
Unbounded subnormal operators. Why?, UNIV. IAGEL. ACTA MATH. no. 34 (1997), 149--152
71.
Operators preserving orthogonality of polynomials, STUDIA MATH. 120 (1996), no. 3, 205--218
70.
A method of localizing the spectra of sequences of orthogonal polynomials, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ORTHOGONALITY, MOMENT PROBLEMS AND CONTINUED FRACTIONS (DELFT, 1994). J. Comput. Appl. Math. 65 (1995), no. 1-3, 387--394
68.
Localization in the implicit function theorem: the method and an application, INNOVATIVE METHODS IN NUMERICAL ANALYSIS (BRESSANONE, 1992). Appl. Numer. Math. 15 (1994), no. 2, 299--303
67.
The Sz.-Nagy "théoreme principal" extended, APPLICATION TO SUBNORMALITY. ACTA SCI. MATH. (SZEGED) 57 (1993), no. 1-4, 249--262
66.
A (little) step towards orthogonality of analytic polynomials, PROCEEDINGS OF THE SEVENTH SPANISH SYMPOSIUM ON ORTHOGONAL POLYNOMIALS AND APPLICATIONS (VII SPOA) (GRANADA, 1991). J. Comput. Appl. Math. 49 (1993), no. 1-3, 255--261
65.
On extending backwards positive definite sequences, EXTRAPOLATION AND RATIONAL APPROXIMATION (PUERTO DE LA CRUZ, 1992). Numer. Algorithms 3 (1992), no. 1-4, 419--425
63.
Cosine representations of Bochner type, REND. CIRC. MAT. PALERMO (2) 39 (1990), no. 3, 486--492 (1991)
61.
Unbounded subnormal operators and their models, BULL. IRANIAN MATH. SOC. 17 (1990), no. 1, 67--79
59.
Unbounded weighted shifts and subnormality, INTEGRAL EQUATIONS OPERATOR THEORY 12 (1989), no. 1, 146--153
58.
The normal part of an unbounded operator, NEDERL. AKAD. WETENSCH. INDAG. MATH. 51 (1989), no. 4, 495--503
57.
On normal extensions of unbounded operators, II. ACTA SCI. MATH. (SZEGED) 53 (1989), no. 1-2, 153--177
54.
53.
Equivalent definitions of positive definiteness, PACIFIC J. MATH. 110 (1984), no. 2, 315--324
52.
49.
Subnormals in $Csp{*} $-algebras, PROC. AMER. MATH. SOC. 84 (1982), no. 4, 533--534
47.
Sur les fonctions admettant une extension de type positif, (FRENCH) C. R. ACAD. SCI. PARIS SÉR. I MATH. 292 (1981), no. 8, 431--432
46.
Note on a general dilation theorem, ANN. POLON. MATH. 36 (1979), no. 1, 43--47
45.
Dilations on involution semigroups, PROC. AMER. MATH. SOC. 66 (1977), no. 1, 30--32
44.
A general dilation theorem, BULL. ACAD. POLON. SCI. SÉR. SCI. MATH. ASTRONOM. PHYS. 25 (1977), no. 3, 263--267
43.
On the boundedness condition involved in dilation theory, BULL. ACAD. POLON. SCI. SÉR. SCI. MATH. ASTRONOM. PHYS. 24 (1976), no. 10, 877--881
42.
On Hammerstein integral equations, ATTI ACCAD. NAZ. LINCEI REND. CL. SCI. FIS. MAT. NATUR. (8) 59 (1975), no. 1-2, 65--67 (1976)
40.
38.
Decomposition of operator valued representations of Banach algebras, BULL. ACAD. POLON. SCI. SÉR. SCI. MATH. ASTRONOM. PHYS. 18 (1970), 321--324
34.
A method of localization of implicit functions, BULL. ACAD. POLON. SCI. SÉR. SCI. MATH. ASTRONOM. PHYS. 16 (1968) 937--942
33.
A numerical approach to a localization problem of implicit functions, BULL. ACAD. POLON. SCI. SÉR. SCI. MATH. ASTRONOM. PHYS. 16 (1968), 943--946
31.
On a certain sequence of ordinary differential equations, ZESZYTY NAUK. UNIW. JAGIELLO. PRACE MAT. no. 9 (1963) 89--91
29.
Moments from their very truncations. Function spaces, CONTEMP. MATH. 435, Amer. Math. Soc., Providence, RI, 2007
28.
Operators of the q-oscillator. Noncommutative Harmonic Analysis with Applications to Probability, BANACH CENTER PUBL. 78, Inst. Math. Polish Acad.Sci., Warszawa, 2007, 293-307
27.
26.
24.
Unitary dilation of several contractions, RECENT ADVANCES IN OPERATOR THEORY AND RELATED TOPICS (SZEGED, 1999), 585--598, Oper. Theory Adv. Appl., 127, Birkhäuser, Basel, 2001
23.
Circular invariance of the Weyl form of the canonical commutation relation, MATHEMATICAL PHYSICS AND STOCHASTIC ANALYSIS (LISBON, 1998), Essays in Honour of Ludwig Streit, eds. S. Albeverio, Ph. Blanchard, L. Ferreira, T. Hida, Y. Kondratiev, R. Vilela Mendes, 379--383, World Sci. Publishing, River Edge, NJ, 2000
22.
The reproducing kernel Hilbert space and its multiplication operators, COMPLEX ANALYSIS AND RELATED TOPICS (CUERNAVACA, 1996), 253--263, Oper. Theory Adv. Appl., 114, Birkhäuser, Basel, 2000
21.
Analytic models of the quantum harmonic oscillator, OPERATOR THEORY FOR COMPLEX AND HYPERCOMPLEX ANALYSIS (MEXICO CITY, 1994), 269--276, Contemp. Math., 212, Amer. Math. Soc., Providence, RI, 1998
20.
The quantum harmonic oscillator in ${mathcal L}sp 2({R})$, SPECIAL FUNCTIONS AND DIFFERENTIAL EQUATIONS (MADRAS, 1997), 206--211, Allied Publ., New Delhi, 1998
19.
An inductive limit procedure within the quantum harmonic oscillator, CONTRIBUTIONS TO OPERATOR THEORY IN SPACES WITH AN INDEFINITE METRIC (VIENNA, 1995), 389--395, Oper. Theory Adv. Appl., 106, Birkhäuser, Basel, 1998
18.
Linear operators, PAPERS FROM THE SEMESTER HELD IN WARSAW, FEBRUARY 7--May 15, 1994. Edited by Jan Janas, Franciszek Hugon Szafraniec and Jaroslav Zemánek. Banach Center Publications, 38. Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997. 457 pp
17.
Yet another face of the creation operator, OPERATOR THEORY AND BOUNDARY EIGENVALUE PROBLEMS (VIENNA, 1993), 266--275, Oper. Theory Adv. Appl., 80, Birkhäuser, Basel, 1995
16.
On (semi)groups having empty resolvent set, EVOLUTION EQUATIONS, CONTROL THEORY, AND BIOMATHEMATICS (HAN SUR LESSE, 1991), 553--556, Lecture Notes in Pure and Appl. Math., 155, Dekker, New York, 1994
15.
On preserving orthogonality of polynomials on the unit circle, ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE: THEORY AND APPLICATIONS (MADRID, 1994), 143--146, Univ. Carlos III Madrid, Leganés, 1994
14.
Sesquilinear selection of elementary spectral measures and subnormality, ELEMENTARY OPERATORS AND APPLICATIONS (BLAUBEUREN, 1991), 243--248, World Sci. Publishing, River Edge, NJ, 1992
13.
Moments on compact parts of real algebraic sets of the plane, ORTHOGONAL POLYNOMIALS AND THEIR APPLICATIONS (ERICE, 1990), 393--395, IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991
12.
A RKHS of entire functions and its multiplication operator, AN EXPLICIT EXAMPLE. LINEAR OPERATORS IN FUNCTION SPACES (TIMIC SOARA, 1988), 309--312, Oper. Theory Adv. Appl., 43, Birkhäuser, Basel, 1990
11.
Orthogonal polynomials and subnormality of related shift operators, SECOND INTERNATIONAL SYMPOSIUM (SEGOVIA, 1986): "On Orthogonal Polynomials and their Applications", 153--155, Monograf. Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 1, Acad. Ci. Exact., Fís.-Quím. Nat. Zaragoza, Zaragoza, 1988
10.
A characterization of subnormal operators, SPECTRAL THEORY OF LINEAR OPERATORS AND RELATED TOPICS (TIMIC SOARA/HERCULANE, 1983), 261--263, Oper. Theory Adv. Appl., 14, Birkhäuser, Basel, 1984
9.
Interpolation and domination by positive definite kernels, COMPLEX ANALYSIS---FIFTH ROMANIAN-FINNISH SEMINAR, PART 2 (Bucharest, 1981), 291--295, Lecture Notes in Math., 1014, Springer, Berlin-New York, 1983
8.
Dilations of linear and nonlinear operator maps, FUNCTIONS, SERIES, OPERATORS, VOL. I, II (BUDAPEST, 1980), 1165--1169, Colloq. Math. Soc. János Bolyai, 35, North-Holland, Amsterdam, 1983
7.
Moments on compact sets, PREDICTION THEORY AND HARMONIC ANALYSIS, 379--385, North-Holland, Amsterdam-New York, 1983
6.
Bounded vectors and formally normal operators, DILATION THEORY, TOEPLITZ OPERATORS, AND OTHER TOPICS (TIMIC SOARA/HERCULANE, 1982), 363--370, Operator Theory: Adv. Appl., 11, Birkhäuser, Basel-Boston, Mass., 1983
5.
Boundedness in dilation theory, SPECTRAL THEORY (WARSAW, 1977), 449--453, Banach Center Publ., 8, PWN, Warsaw, 1982
4.
Dilations with operator multipliers, PROBABILITY THEORY ON VECTOR SPACES, II (PROC. SECOND INTERNAT. CONF., B3A?EJEWKO, 1979), pp. 208--214, Lecture Notes in Math., 828, Springer, Berlin, 1980
3.
Apropos of Professor Masani's talk, PROBABILITY THEORY ON VECTOR SPACES (PROC. CONF., TRZEBIESZOWICE, 1977), pp. 245--249, Lecture Notes in Math., 656, Springer, Berlin, 1978

Doktoranci (po 27 października 2003 roku)

DoktorantOtwarcieZakonczenie
Piotr Niemiec2003-01-232004-09-23
Anna Kula2007-05-312008-09-25

Recenzje (po 27 października 2003 roku)

RecenzowanyJednostkaTreść recenzji
Doktorat: Piotr DymekKatedra Analizy Funkcjonalnej 
Doktorat: Piotr Budzyński 
Doktorat: Michał WojtylakKatedra Analizy Funkcjonalnej 
Doktorat: Artur Płaneta 

Granty (realizowane po maju 2009 roku)

TytułRolaRozpoczęcieZakończenie
Operatory w przestrzeniach Hilberta - teoria i zastosowaniaWykonawca2014-07-082017-07-07
Wybarne klasy operatorów w przestrzeniach HilbertaKierownik2012-05-182015-05-17

Nagrody

RokRodzajRodzaj uhonorowanej działalnościTyp 
2020nagrodadziałalność naukowa lub naukowo-badawczazagranicznaSzczegóły
2005nagrodawybitny dorobek naukowy lub artystycznykrajowaSzczegóły
2014nagrodawybitny dorobek naukowy lub artystycznykrajowaSzczegóły