dr hab. Bartosz Zieliński, prof. UJ
Jednostki:
- Wydział Matematyki i Informatyki UJ
 - Instytut Informatyki i Matematyki Komputerowej
 - Katedra Informatyki Stosowanej
 
Publikacje:
	64.
		Beyond [cls]: Exploring the true potential of Masked Image Modeling representations, IEEE International Conference on Computer Vision [ICCV], (2025), 	
	63.
		LucidPPN: Unambiguous Prototypical Parts Network for User-centric Interpretable Computer Vision, International Conference on Learning Representations [ICLR](MAIN) vol. ICLR 2025 200 pkt (2025), 1-97	
	62.
		Bartosz Zieliński, Marcin Osial, Daniel Marczak 	
	
		Parameter-Efficient Interventions for Enhanced Model Merging, SIAM International Conference on Data Mining [SDM], (2025), 516-526	
	61.
		Bartosz Zieliński, Adam Pardyl, Grzegorz Kurzejamski, Jan Olszewski, Tomasz Trzciński	
	
		Beyond Grids: Exploring Elastic Input Sampling for Vision Transformers, IEEE Workshop on Applications of Computer Vision [WACV](MAIN), (2025), 8536-8545	
	60.
		Bartosz Zieliński, Jan Olszewski, Dawid Rymarczyk, Piotr Wójcik, Mateusz Pach	
	
		TORE: Token Recycling in Vision Transformers for Efficient Active Visual Exploration, IEEE Workshop on Applications of Computer Vision [WACV](MAIN), (2025), 8606-8616	
	59.
		AdaGlimpse: Active Visual Exploration with Arbitrary Glimpse Position and Scale, European Conference on Computer Vision [ECCV], (2025), 112-129	
	58.
		Bartosz Zieliński, Tomasz Trzciński, Bartłomiej Twardowski, Kamil Adamczewski, Bartosz Wójcik	
	
		Zero-Waste Machine Learning, European Conference on Artificial Intelligence [ECAI](MAIN) vol. 392 (2024), 43-49	
	57.
		Bartosz Zieliński, Marcin Przewięźlikowski, Mateusz Pyla, Bartłomiej Twardowski, Jacek Tabor, Marek Śmieja	
	
		Augmentation-aware self-supervised learning with conditioned projector, Knowledge-Based Systems vol. 305 (2024), 112572	
	56.
		Bartosz Zieliński, Szymon Opłatek, Dawid Rymarczyk	
	
		Revisiting FunnyBirds Evaluation Framework for Prototypical Parts Networks, Communications in Computer and Information Science vol. 2153 (2024), 57-68	
	55.
		ProtoNCD: Prototypical Parts for Interpretable Novel Class Discovery, European Symposium on Artificial Neural Networks [ESANN], (2024), 273-278	
	54.
		A deep cut into Split Federated Self-Supervised Learning, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database [ECML PKDD](MAIN), (2024), 444-459	
	53.
		Bartosz Zieliński, Adriana Borowa, Dawid Rymarczyk, Marek Żyła, Marek Kańduła, Ana Sánchez-Fernández, Krzysztof Rataj, Łukasz Struski, Jacek Tabor	
	
	52.
		Bartosz Zieliński, Grzegorz Rypeść, Valeriya Khan, Tomasz Trzcinski, Bartłomiej Twardowski, Sebastian Cygert	
	
		Divide and not forget: Ensemble of selectively trained experts in Continual Learning, International Conference on Learning Representations [ICLR](MAIN), (2024), 	
	51.
		Interpretability Benchmark for Evaluating Spatial Misalignment of Prototypical Parts Explanations, National Conference of the American Association for Artificial Intelligence [AAAI](MAIN) vol. 38 (19) (2024), 21563 - 21573	
	50.
		Bartosz Zieliński, Dawid Rymarczyk, Weiwei Schultz, Adriana Borowa, Joshua Friedman, Tomasz Danel, Patrick Branigan, Michał Chałupczak, Anna Bracha, Tomasz Krawiec, Michał Warchoł, Katherine Li, Gert De Hertogh, Louis R. Ghanem, Aleksandar Stojmirovic	
	
	49.
		ProPML: Probability Partial Multi-label Learning, IEEE International Conference on Data Science and Advanced Analytics [DSAA], (2023), 1-8	
	48.
		Bartosz Zieliński, Łukasz Struski, Dawid Rymarczyk, Arkadiusz Lewicki, Robert Sabiniewicz, Jacek Tabor	
	
		ProMIL: Probabilistic Multiple Instance Learning for Medical Imaging, European Conference on Artificial Intelligence [ECAI] vol. 372 (2023), 2210 - 2217	
	47.
		Bartosz Zieliński, Adam Pardyl, Dawid Rymarczyk, Joanna Jaworek-Korjakowska, Dariusz Kucharski, Andrzej Brodzicki, Julia  Lasek, Zofia  Schneider, Iwona Kucybała, Andrzej Urbanik, Rafał Obuchowicz, Zbisław Tabor	
	
		CompLung: Comprehensive Computer-Aided Diagnosis of Lung Cancer, European Conference on Artificial Intelligence [ECAI] vol. 372 (2023), 1835 - 1842	
	46.
		Bartosz Zieliński, Dawid Rymarczyk, Joost van de Weijer , Bartłomiej Twardowski	
	
		ICICLE: Interpretable Class Incremental Continual Learning, IEEE International Conference on Computer Vision [ICCV](MAIN) vol. 2023 (2023), 1887-1898	
	45.
		Bartosz Zieliński, Adam Pardyl, Grzegorz Rypeść, Grzegorz Kurzejamski, Tomasz Trzciński	
	
		Active Visual Exploration Based on Attention-Map Entropy, International Joint Conference on Artificial Intelligence [IJCAI](MAIN), (2023), 1303-1311	
	44.
		Bartosz Zieliński, Witold Oleszkiewicz, Dominika Basaj, Igor Sieradzki, Michał Górszczak, Barbara Rychalska, Koryna Lewandowska, Tomasz Trzcinski	
	
		Visual Probing: Cognitive Framework for Explaining Self-Supervised Image Representations, IEEE Access vol. 11 (2023), 13028-13043	
	43.
		ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts, IEEE Workshop on Applications of Computer Vision [WACV](MAIN) vol. 2023 (2023), 1481-1492	
	42.
		SONGs: Self-Organizing Neural Graphs, IEEE Workshop on Applications of Computer Vision [WACV](MAIN), (2023), 3837-3846	
	41.
		Automating Patient-Level Lung Cancer Diagnosis in Different Data Regimes, International Conference on Neural Information Processing [ICONIP](MAIN) vol. Communications in Computer and Information Science 1794 (2023), 13–24	
	40.
		Bartosz Zieliński, Adriana Borowa, Dawid Rymarczyk, Dorota Ochońska, Agnieszka Sroka-Oleksiak, Monika Brzychczy-Włoch	
	
	39.
		Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek Tabor, Bartosz Zieliński	
	
		Interpretable Image Classification with Differentiable Prototypes Assignment, European Conference on Computer Vision [ECCV](MAIN) vol. Lecture Notes in Computer Science 13672 (2022), 351-368	
	38.
		ProtoMIL: Multiple Instance Learning with Prototypical Parts for Whole-Slide Image Classification, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database [ECML PKDD](MAIN) vol. Lecture Notes in Computer Science 13713 (2022), 421-436	
	37.
		Weakly-supervised cell classification for effective High Content Screening, International Conference on Computational Science [ICCS](MAIN) vol. Lecture Notes in Computer Science 13350 (2022), 318–330	
	36.
		Dominika Basaj, Witold Oleszkiewicz, Tomasz Trzciński, Bartosz Zieliński	
	
		Which Visual Features Impact the Performance of Target Task in Self-supervised Learning?, International Conference on Computational Science [ICCS](MAIN) vol. Lecture Notes in Computer Science 13350 (2022), 331–344	
	35.
		Michał Górszczak, Bartosz Zieliński	
	
		What Pushes Self-Supervised Image Representations Away?, International Conference on Neural Information Processing [ICONIP](MAIN) vol. Communications in Computer and Information Science 1516 (2021), 514-521	
	34.
		Adriana Borowa, Anna Bracha, Maurycy Chronowski, Wojciech Ozimek, Dawid Rymarczyk, Bartosz Zieliński	
	
		Comparison of Supervised and Self-supervised Deep Representations Trained on Histological Image, World Congress on Medical and Health Informatics [MEDINFO] vol. Studies in Health Technology and Informatics 290 (2021), 1052-1053	
	33.
		ProtoPShare: Prototypical Parts Sharing for Similarity Discovery in Interpretable Image Classification, ACM International Conference on Knowledge Discovery and Data Mining [KDD](MAIN) vol. 9781450383325 (2021), 1420-1430	
	32.
		Dominika Basaj, Michał Górszczak, Witold Oleszkiewicz, Barbara Rychalska, Igor Sieradzki, Tomasz Trzcinski, Bartosz Zieliński	
	
		Explaining Self-Supervised Image Representations with Visual Probing, International Joint Conference on Artificial Intelligence [IJCAI](MAIN), (2021), 592-598	
	31.
		Deep learning classification of bacteria clones explained by persistence homology, IEEE International Joint Conference on Neural Networks [IJCNN] vol. 978-1-6654-3900-8 (2021), 1-8	
	30.
		Kernel Self-Attention for Weakly-supervised Image Classification using Deep Multiple Instance Learning, IEEE Workshop on Applications of Computer Vision [WACV] vol. 978-1-6654-0477-8 (2021), 1720-1729	
	29.
		Persistence codebooks for topological data analysis, Artificial Intelligence Review vol. 54 (3) (2021), 1969-2009	
	28.
		Monika Brzychczy-Włoch, Adam Piekarczyk, Dawid Rymarczyk, Agnieszka Sroka-Oleksiak, Bartosz Zieliński	
	
		Deep learning approach to describe and classify fungi microscopic images, PLoS One vol. 15(6) (2020), 1-16	
	27.
		Andrzej Antoł, Marcin Czarnołęski, Terézia Horváthová, Jan Kozłowski, Anna Łabecka, Anna Peciod, Natalia Szabla, Yaroslav Vasko, Bartosz Zieliński	
	
	26.
		Variational Auto-Encoders for Generating Feature-Preserving Automata, Proceedings of Ncma 2019, Books@ocg.at (austrian Computer Society) (2019), 171-185	
	25.
		Persistence bag-of-words for topological data analysis, Proceedings of the 28th International Joint Conference On Artificial Intelligence (ijcai 2019) (2019), 4489-4495	
	24.
		Processing of missing data by neural networks, Advances in Neural Information Processing Systems vol. 31 (2018), 2719-2729	
	23.
		Aneta Blat, Stefan Chłopicki, Karolina Chrabąszcz, Max Diem, Agnieszka Jasztal, Kamila Małek, Katarzyna Marzec, Marta Smęda, Bartosz Zieliński	
	
	22.
		A machine learning approach to synchronization of automata, Expert Systems with Applications vol. 97 (2018), 357-371	
	21.
		Mateusz Juda, Markus Seidl, Matthias Zeppelzauer, Bartosz Zieliński	
	
	20.
		Monika Brzychczy-Włoch, Krzysztof Misztal, Dorota Ochońska, Anna Plichta, Przemysław Spurek, Bartosz Zieliński	
	
		Deep learning approach to bacterial colony classification, PLoS One vol. 12 (9) (2017), 1-14	
	19.
		Dariusz Michalski, Zbisław Tabor, Bartosz Zieliński	
	
	18.
		Regression SVM for incomplete data, Schedae Informaticae vol. 26 (2017), 23-35	
	17.
		Agata Dróżdż, Marzena Frołow, Bartosz Zieliński	
	
		Fully-Automatic Method for Assessment of Flow-Mediated Dilation, Lecture Notes in Computer Science vol. 9972 (2016), 439-450	
	16.
		Mateusz Juda, Markus Seidl, Matthias Zeppelzauer, Bartosz Zieliński	
	
		Topological Descriptors for 3D Surface Analysis, Lecture Notes in Computer Science vol. 9667 (2016), 77-87	
	15.
		RoughCut-New Approach to Segment High-Resolution Images, Lecture Notes in Artificial Intelligence vol. 9693 (2016), 591-601	
	14.
		Schmid Filter and Inpainting in Computer-Aided Erosions and Osteophytes Detection Based on Hand Radiographs, Advances in Intelligent Systems and Computing vol. 403 (2015), 511-519	
	13.
		Mariusz Korkosz, Marek Skomorowski, Karolina Sprężak, Wadim Wojciechowski, Bartosz Zieliński	
	
		Computer aided erosions and osteophytes detection based on hand radiographs, Pattern Recognition vol. 48 (2015), 2304-2317	
	12.
		Agata Dróżdż, Marzena Frołow, Agata Kowalewska, Adam Roman, Bartosz Zieliński	
	
		A new approach to automatic continuous artery diameter measurement , Proceedings of the 2014 Federated Conference On Computer Science and Information Systems vol. 2 (2014), 247–251	
	11.
		Wadim Wojciechowski, Bartosz Zieliński	
	
		Computer-based hand radiographs analysis for erosions and osteophytes detection, European Congress of Radiology Proceedings (2012), 13	
	10.
		Marzena Bielecka, Andrzej Bielecki, Mariusz Korkosz, Marek Skomorowski, Karolina Sprężak, Wadim Wojciechowski, Bartosz Zieliński	
	
		A shape description language for osteophytes detection in upper surfaces of the metacarpophalangeal joints, Computer Recognition Systems 4, Advances in Intelligent and Soft Computing, Springer (2011), 479-487	
	9.
		Marzena Bielecka, Andrzej Bielecki, Mariusz Korkosz, Marek Skomorowski, Wadim Wojciechowski, Bartosz Zieliński	
	
	8.
		Andrzej Bielecki, Mariusz Korkosz, Wadim Wojciechowski, Bartosz Zieliński	
	
	7.
		Leszek Nowak, Bartosz Zieliński	
	
	6.
		Marzena Bielecka, Andrzej Bielecki, Mariusz Korkosz, Marek Skomorowski, Wadim Wojciechowski, Bartosz Zieliński	
	
	5.
		Marzena Bielecka, Marek Skomorowski, Bartosz Zieliński	
	
	4.
	3.
		Segmentacja i selekcja cech jako jeden z podstawowych problemów w rozpoznawaniu obrazów medycznych, Krakowski Rocznik Kognitywistyczny vol. 2 (2008), 93-104	
	2.
		Andrzej Bielecki, Mariusz Korkosz, Bartosz Zieliński	
	
Konferencje:
	14.
		Medical Imaging with Deep Learning, École Polytechnique de Montréal, Montreal, Kanada, 2020-07-06 - 2020-07-09	
	13.
		International Joint Conference in Artificial Intelligence (IJCAI 2019), AAAI Foundation, Makao, Chiny, 2019-08-12 - 2019-08-15	
	12.
		Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, Montreal, Kanada, 2018-12-02 - 2018-12-08	
	11.
		Dragon Applied Topology Conference, Swansea University, Swansea, Wielka Brytania, 2018-09-11 - 2018-09-14	
	10.
		ICML 35th International Conference on Machine Learning, International Machine Learning Society, Sztokholm, Szwecja, 2018-07-10 - 2018-07-15	
	9.
		Applied Machine Learning Days, École Polytechnique Fédérale de Lausanne, Lozanna, Szwajcaria, 2018-01-27 - 2018-01-30	
	8.
		International Conference on Computer Vision, The Computer Vision Foundation, Wenecja, Włochy, 2017-10-22 - 2017-10-29	
	7.
		Applied Topology in Będlewo 2017, Polish Academy of Sciences, Będlewo, Poland, 2017-06-25 - 2017-07-01	
	6.
		Winter Workshop on Dynamics, Topology and Computations 2017, WMiI UJ, Będlewo, Polska, 2017-02-12 - 2017-02-18	
	5.
		International Conference on Computer Vision and Graphics, Towarzystwo Przetwarzania Obrazów, Warszawa, Polska, 2016-09-19 - 2016-09-21	
	4.
		International Workshop on Computational Topology in Image Context, CTIC 2016, Aix-Marseille Université, Marsylia, Francja, 2016-06-15 - 2016-06-17	
	3.
		International Conference on Artificial Intelligence and Soft Computing, ICAISC 2016, Polish Neural Network Society, Zakopane, Polska, 2016-06-12 - 2016-06-16	
	2.
		International Conference on Computer Recognition Systems, CORES 2015, Katedra Systemów i Sieci Komputerowych, Politechnika Wrocławska, Wrocław, Polska, 2015-05-25 - 2015-05-27	
	1.
		Federated Conference on Computer Science and Information Systems, FedCSIS 2014, Polskie Towarzystwo Informatyczne, Warszawa, Polska, 2014-09-07 - 2014-09-10	
Granty (realizowane po maju 2009 roku)
| Tytuł | Rola | Rozpoczęcie | Zakończenie | 
|---|---|---|---|
| Interpretowalne metody zrównoważonej sztucznej inteligencji tłumaczące decyzje w sposób intuicyjny | Kierownik | 2023-06-27 | 2026-06-26 | 
| Detektory i deskryptory punktów charakterystycznych oparte na informacji topologicznej | Kierownik | 2016-06-14 | 2020-06-13 | 
| Teoria analizy niekompletnych danych | Wykonawca | 2016-07-13 | 2019-10-12 | 
| Algorytmiczne aspekty synchronizacji | Wykonawca | 2016-02-02 | 2019-02-01 | 

