mgr Marcin Przewięźlikowski
Publikacje:
	12.
		Beyond [cls]: Exploring the true potential of Masked Image Modeling representations, IEEE International Conference on Computer Vision [ICCV], (2025), 	
	11.
		Hypernetwork Approach to Bayesian MAML (Student Abstract), National Conference of the American Association for Artificial Intelligence [AAAI] vol.  39 (2025), 29325-29327	
	10.
		Bartosz Zieliński, Marcin Przewięźlikowski, Mateusz Pyla, Bartłomiej Twardowski, Jacek Tabor, Marek Śmieja	
	
		Augmentation-aware self-supervised learning with conditioned projector, Knowledge-Based Systems vol. 305 (2024), 112572	
	9.
		Zięba Maciej , Marcin Przewięźlikowski, Marek Śmieja, Jacek Tabor, Tomasz Trzciński, Przemysław Spurek	
	
		RegFlow: Probabilistic Flow-Based Regression for Future Prediction, Asian Conference on Intelligent Information and Database Systems [ACIIDS], (2024), 267–279	
	8.
		HyperMAML: Few-shot adaptation of deep models with hypernetworks, Neurocomputing vol. 598 (2024), 128-179	
	7.
		A deep cut into Split Federated Self-Supervised Learning, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database [ECML PKDD](MAIN), (2024), 444-459	
	6.
		Bartosz Wójcik, Marcin Przewięźlikowski, Filip  Szatkowski, Maciej Wołczyk, Klaudia Bałazy, Bartłomiej Krzepkowski, Igor Podolak, Jacek Tabor, Marek Śmieja, Tomasz Trzciński	
	
		Zero time waste in pre-trained early exit neural networks, Neural Networks vol. 168 (2023), 580-601	
	5.
		Przemysław Spurek, Marcin Sendera, Marcin Przewięźlikowski, Jan Miksa, Mateusz Rajski, Konrad Karanowski, Maciej Zieba, Jacek Tabor	
	
	4.
		Przemysław Spurek, Jacek Tabor, Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Zięba Maciej 	
	
		Hypershot: Few-shot learning by kernel hypernetworks, IEEE Workshop on Applications of Computer Vision [WACV](MAIN), (2023), 2469--2478	
	3.
		MisConv: Convolutional Neural Networks for Missing Data, IEEE Workshop on Applications of Computer Vision [WACV], (2022), 2060-2069	
	2.
		Estimating conditional density of missing values using deep Gaussian mixture model, International Conference on Neural Information Processing [ICONIP] vol. Lecture Notes in Computer Science volume 12534 (2020), 220-231	
	1.
		Estimating conditional density of missing values using deep Gaussian mixture model, International Conference On Machine Learning (workshop Track) (2020), 6	
Granty (realizowane po maju 2009 roku)
| Tytuł | Rola | Rozpoczęcie | Zakończenie | 
|---|---|---|---|
| Usprawnienie adaptowalności modeli uczonych metodami samonadzorowanymi | Kierownik | 2024-01-23 | 2026-01-26 | 

