dr hab. Łukasz Struski, prof. UJ
Jednostki:
- Wydział Matematyki i Informatyki UJ
 - Instytut Matematyki
 - Katedra Matematyki Stosowanej
 
Doktorat Otwarcie: 2012-05-31, Zamknięcie: 2014-01-30
Doktorat Otwarcie: 2013-03-28, Zamknięcie: 2014-01-30
Publikacje:
	50.
		Tight Bounds for Jensen’s Gap with Applications to Variational Inference, ACM International Conference on Information and Knowledge Management [CIKM](MAIN), (2025), accepted	
	49.
		PrAViC: Probabilistic Adaptation Framework for Real-Time Video Classification, European Conference on Artificial Intelligence [ECAI](MAIN), (2025), accepted	
	48.
		LapSum - One Method to Differentiate Them All: Ranking, Sorting and Top-k Selection, International Conference on Machine Learning [ICML], (2025), 	
	47.
		Łukasz Struski,  Tomasz Urbańczyk, Krzysztof Bucki, Bartłomiej Cupiał, Aneta Kaczyńska, Przemysław Spurek, Jacek Tabor	
	
		MeVGAN: GAN-based plugin model for  video generation with applications in  colonoscopy, PLoS One vol. 20 (5) (2025), e0312038	
	46.
		SEMU: Singular Value Decomposition for Efficient Machine Unlearning, International Conference on Machine Learning [ICML], (2025), 	
	45.
		Bartosz Zieliński, Adriana Borowa, Dawid Rymarczyk, Marek Żyła, Marek Kańduła, Ana Sánchez-Fernández, Krzysztof Rataj, Łukasz Struski, Jacek Tabor	
	
	44.
		Łukasz Struski, Paweł Morkisz, Przemysław Spurek, Samuel Rodriguez Bernabeu, Tomasz Trzciński	
	
		Efficient GPU implementation of randomized SVD and its applications, Expert Systems with Applications vol. 248 (2024), 123462	
	43.
	42.
		Interpretability Benchmark for Evaluating Spatial Misalignment of Prototypical Parts Explanations, National Conference of the American Association for Artificial Intelligence [AAAI](MAIN) vol. 38 (19) (2024), 21563 - 21573	
	41.
	40.
		ProPML: Probability Partial Multi-label Learning, IEEE International Conference on Data Science and Advanced Analytics [DSAA], (2023), 1-8	
	39.
		Bartosz Zieliński, Łukasz Struski, Dawid Rymarczyk, Arkadiusz Lewicki, Robert Sabiniewicz, Jacek Tabor	
	
		ProMIL: Probabilistic Multiple Instance Learning for Medical Imaging, European Conference on Artificial Intelligence [ECAI] vol. 372 (2023), 2210 - 2217	
	38.
		r-softmax: Generalized Softmax with Controllable Sparsity Rate, International Conference on Computational Science [ICCS] vol. Lecture Notes in Computer Science, vol 14074. Springer, Cham (2023), 137-145	
	37.
		Bounding Evidence and Estimating Log-Likelihood in VAE, International Conference on Artificial Intelligence and Statistics [AISTATS](MAIN) vol. 206 (2023), 5036-5051	
	36.
		ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts, IEEE Workshop on Applications of Computer Vision [WACV](MAIN) vol. 2023 (2023), 1481-1492	
	35.
		SONGs: Self-Organizing Neural Graphs, IEEE Workshop on Applications of Computer Vision [WACV](MAIN), (2023), 3837-3846	
	34.
		Romuald A.  Janik, Igor Podolak, Łukasz Struski, Anna  Ceglarek, Koryna Lewandowska, Barbara  Sikora-Wachowicz, Tadeusz Marek, Magdalena Fąfrowicz	
	
	33.
	32.
		Przemysław Spurek, Artur Kasymov, Marcin Mazur, Diana Janik, Sławomir K. Tadeja, Łukasz Struski, Jacek Tabor, Tomasz Trzciński	
	
		HyperPocket: generative point cloud completion, IEEE/RSJ International Conference on Intelligent Robots and Systems [IROS], (2022), 6848-6853	
	31.
		Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek Tabor, Bartosz Zieliński	
	
		Interpretable Image Classification with Differentiable Prototypes Assignment, European Conference on Computer Vision [ECCV](MAIN) vol. Lecture Notes in Computer Science 13672 (2022), 351-368	
	30.
		LocoGAN—Locally convolutional GAN, Computer Vision and Image Understanding vol. 221 (2022), 103462	
	29.
		Romuald A.  Janik, Igor Podolak, Łukasz Struski, Anna  Ceglarek, Koryna Lewandowska, Barbara  Sikora-Wachowicz, Tadeusz Marek, Magdalena Fafrowicz	
	
	28.
		MisConv: Convolutional Neural Networks for Missing Data, IEEE Workshop on Applications of Computer Vision [WACV], (2022), 2060-2069	
	27.
		Łukasz Struski, Jacek Tabor, Szymon Bobek, Sławomir K. Tadeja, Przemysław  Stachura, Timoleon Kipourus, Grzegorz Nalepa, Per Ola Kristensson	
	
	26.
	25.
		Missing Glow Phenomenon: learning disentangled representation of missing data, International Conference on Neural Information Processing [ICONIP] vol. vol 1516 (2021), 196-204	
	24.
		Dawid Warszycki, Łukasz Struski, Marek Śmieja, Rafał Kafel, Rafał Kurczab	
	
	23.
		ProtoPShare: Prototypical Parts Sharing for Similarity Discovery in Interpretable Image Classification, ACM International Conference on Knowledge Discovery and Data Mining [KDD](MAIN) vol. 9781450383325 (2021), 1420-1430	
	22.
		Estimating conditional density of missing values using deep Gaussian mixture model, International Conference on Neural Information Processing [ICONIP] vol. Lecture Notes in Computer Science volume 12534 (2020), 220-231	
	21.
		Iterative Imputation of Missing Data using Auto-encoder Dynamics, International Conference on Neural Information Processing [ICONIP] vol. Lecture Notes in Computer Science, volume 12534 (2020), 258-269	
	20.
		Processing of Incomplete Images by (Graph) Convolutional Neural Networks, International Conference On Neural Information Processing vol.  Lecture Notes in Computer Science, volume 12533 (2020), 512-523	
	19.
		Tomasz Danel, Przemysław Spurek, Jacek Tabor, Marek Śmieja, Łukasz Struski, Agnieszka Słowik, Łukasz Maziarka	
	
		Spatial Graph Convolutional Networks,  International Conference On Neural Information Processing  vol. Communications in Computer and Information Science book series (CCIS, volume 1333) (2020), 668-675	
	18.
		Can auto-encoders help with filling missing data?, International Conference On Learning Represenation (workshop Track) (2020), 6	
	17.
		Estimating conditional density of missing values using deep Gaussian mixture model, International Conference On Machine Learning (workshop Track) (2020), 6	
	16.
		Processing of incomplete images by (graph) convolutional neural networks,  International Conference On Machine Learning (workshop Track) (2020), 	
	15.
		Flow-based SVDD for anomaly detection, International Conference On Machine Learning (workshop Track) (2020), 	
	14.
		Marek Śmieja, Łukasz Struski, Mario A.T.  Figueiredo	
	
		A Classification-Based Approach to Semi-Supervised Clustering with Pairwise Constraints, Neural Networks vol. 127 (2020), 193-203	
	13.
		Pointed subspace approach to incomplete data, Journal of Classification vol. 37 (2020), 42-57	
	12.
		Generalized RBF kernel for incomplete data, Knowledge-Based Systems vol. 173 (2019), 150-162	
	11.
		Set Aggregation Network as a Trainable Pooling Layer, International Conference On Neural Information Processing vol. Lecture Notes in Computer Science book series (LNCS, volume 11954) (2019), 419-431	
	10.
		Projected memory clustering, Pattern Recognition Letters vol. 123 (2019), 9-15	
	9.
	8.
		Processing of missing data by neural networks, Advances in Neural Information Processing Systems vol. 31 (2018), 2719-2729	
	7.
		Lossy Compression Approach to Subspace Clustering, Information Sciences vol. 435 (2018), 161-183	
	6.
	5.
		Regression SVM for incomplete data, Schedae Informaticae vol. 26 (2017), 23-35	
	4.
	3.
		Subspace memory clustering, Schedae Informaticae vol. 24 (2015), 133-142 	
	2.
		Expansivity and Cone-fields in Metric Spaces, Journal of Dynamics and Differential Equations vol. 26(3) (2014), 517-527	
	1.
		Cone-Fields without Constant Orbit Core Dimension, Discrete and Continuous Dynamical Systems vol. 32(10) (2012), 3651-3664	
Konferencje:
	10.
		TFML 3rd International Conference on Theoretical Foundations of Machine Learning, Uniwersytet Jagielloński, Kraków, Polska, 2019-02-11 - 2019-02-15	
	9.
		Machine Learning Nokia Workshop, Nokia, Kraków, Polska, 2019-01-17 - 2019-01-17	
	8.
		PL in ML: Polish View on Machine Learning, Uniwersytet Warszawski, Warszawa, Polska, 2018-12-14 - 2018-12-17	
	7.
		NIPS 32nd International Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, Montreal, Kanada, 2018-12-02 - 2018-12-08	
	6.
		ICML 35th International Conference on Machine Learning, International Machine Learning Society, Sztokholm, Szwecja, 2018-07-10 - 2018-07-15	
	5.
		AI @ Samsung, Samsung, Kraków, Polska, 2018-05-25 - 2018-05-25	
	4.
		ICML 34th International Conference on Machine Learning, International Machine Learning Society, Sydney, Australia, 2017-08-06 - 2017-08-11	
	3.
		 Polish-SIGML 2017 - Polska Grupa Badawcza Systemów Uczących się , Department of Machine Learning, Institute of Computer Science and Computational Mathematics, Faculty, Kraków, Poland, 2017-02-17 - 2017-02-17	
	2.
		Theoretical Foundations of Machine Learning 2017, Department of Machine Learning, Institute of Computer Science and Computational Mathematics, Faculty, Kraków, Poland, 2017-02-13 - 2017-02-17	
	1.
		Theoretical Foundations of Machine Learning, Department of Machine Learning, Institute of Computer Science and Computational Mathematics, Faculty, Będlewo, Poland, 2015-02-16 - 2015-02-21	
Konferencje organizowane:
	3.
		Theoretical Foundations of Machine Learning 2017, Kraków, 2017-02-13, 2017-02-17	
	2.
		Polish-SIGML 2017 - Polska Grupa Badawcza Systemów Uczących się, Kraków, 2017-02-17, 2017-07-07	
	1.
		Klaudiusz Wójcik, Armen Edigarian, Antoni Leon Dawidowicz, Wojciech Słomczyński, Leokadia Białas-Cież, Marcin Dumnicki, Dariusz Zawisza, Dagmara Waszkiewicz, Maciej Ślusarek, Łukasz Struski, Arkadiusz Lewandowski, Anna Szymusiak, Beata Palka, Agnieszka Dudek.	
	
		Jubileuszowy Zjazd Matematyków Polskich w stulecie PTM, Kraków, 2019-09-03, 2019-09-07	
Granty (realizowane po maju 2009 roku)
| Tytuł | Rola | Rozpoczęcie | Zakończenie | 
|---|---|---|---|
| Rzadkie i dyskretne reprezentacje w ukrytych przestrzeniach | Kierownik | 2021-07-15 | 2025-11-14 | 
| Teoria analizy niekompletnych danych | Wykonawca | 2016-07-13 | 2019-10-12 | 

