Katedra Teorii Osobliwości - lista publikacji
Nadjednostka:
[2025] [2024] [2023] [2022] [2021] [2020] [2019] [2018] [2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2005] [2004] [2003] [2002] [2001] [2000] [1999] [1998] [1997] [1996] [1995] [1994] [1993] [1992] [1991] [1990] [1989] [1988] [1987] [1986] [1985] [1984] [1983] [1982] [1981] [1980] [1979] [1977] [1976] [1974]
1-18 z 18.
2008
	18.
		On metric types that are definable in an o-minimal structure , Journal of Symbolic Logic vol. 73 (2008), 439-447	
	17.
		Volume, Whitney conditions and Lelong number, Annales Polonici Mathematici vol. 93 (2008), 1-16	
	16.
		Janusz Adamus, Edward Bierstone, Pierre Milman	
	
		Uniform linear bound in Chevalley's lemma, Canadian Journal of Mathematics vol. 60 (2008), 721-733	
	15.
	14.
		On the Kuratowski convergence of analytic sets, Annales Polonici Mathematici vol. 93 (2008), 101-112	
	13.
		On hypersurfaces in P3 with fat points in general position, UNIV. IAGEL. ACTA MATH. 46 (2008), 15-19	
	12.
		Homology classes of real algebraic sets, Annales de l'Institut Fourier vol. 58 (2008), 989-1022	
	11.
		Rational surfaces in algebraic models of smooth manifolds, Archiv der Mathematik vol. 90 (2008), 572-578	
	10.
		Curves on algebraic models of smooth manifolds, Mathematical Research Letters vol. 15 (2008), 289-295	
	9.
		Submanifolds of real algebraic varieties, Proceedings of the American Mathematical Society vol. 136 (2008), 55-65	
	8.
		On the Euler characteristic of the links of a set determined by smooth definable functions, ANN. POLON. MATH. 93 (3) (2008), 231-246	
	7.
		Remarks on Henselian rings, UNIV. IAGEL. ACTA MATH.  no. 46  (2008), 79--85	
	6.
		Lipschitz cell decomposition in o-minimal structures, ILLINOIS J. MATH.  52  (2008),  no. 3, 1045--1063	
	5.
		A linear extension operator for Whitney field on closed o-minimal sets, ANN. INST. FOURIER (GRENOBLE) TOME 58 (2008), 2, 383-404	
	3.
		Rational points on certain del Pezzo surfaces of degree one, Glasgow Mathematical Journal vol. 50 (2008), 557-564	
	2.
		On the diophantine equation (x^2+k)(y^2+k)=(z^2+k)^2, Rocky Mountain Journal of Mathematics vol. 38 (6)  (2008), 2091-2099	
	1.
		Sławomir Cynk, Christian Meyer	
	
		Modularity of some non-rigid double octic Calabi-Yau threefolds, Rocky Mountain Journal of Mathematics vol. 38 (2008), 1937-1958	
