prof. dr hab. Wiesław Pawłucki
Publikacje:
39.
38.
37.
Beata Kocel-Cynk, Wiesław Pawłucki, Anna Valette
36.
35.
Beata Kocel-Cynk, Wiesław Pawłucki, Anna Valette
Semialgebraic version of Whitney's extension theorem, Archiv der Mathematik vol. 113 (2019), 59-62
34.
33.
Beata Kocel-Cynk, Wiesław Pawłucki, Anna Valette
C^p-parametrization in o-minimal structures, Canadian Mathematical Bulletin vol. 62 (1) (2019), 99-108
32.
Strict C^1-triangulations in o-minimal structures, Topological Methods in Nonlinear Analysis vol. 52 No 2 (2018), 739-747
31.
30.
29.
On the implicit function theorem in o-minimal structures, Banach Center Publications vol. 107 (2015), 19-21
28.
Krzysztof Kurdyka, Wiesław Pawłucki
O-minimal version of Whitney's extension theorem, Studia Mathematica vol. 224 (1) (2014), 81-96
27.
Beata Kocel-Cynk, Wiesław Pawłucki, Anna Valette
26.
Higher-order tangents and Fefferman's paper on Whitney's problem, vol. vol. 164 (2006), no 1 (2013), 361-370
25.
Edward Bierstone, Wiesław Pawłucki, Pierre D. Milman
Higher-order tangents and Fefferman's paper on Whitney's problem, Annals of Mathematics vol. vol. 164 (2006), no 1 (2013), 361-370
24.
Lipschitz cell decomposition in o-minimal structures, ILLINOIS J. MATH. 52 (2008), no. 3, 1045--1063
23.
A linear extension operator for Whitney field on closed o-minimal sets, ANN. INST. FOURIER (GRENOBLE) TOME 58 (2008), 2, 383-404
22.
Wiesław Pawłucki, E.Bierstone;C.Fefferman;P.D.Milman;W.Pawłucki
Examples concerning Whitney's ${scr C}sp m$ extension problem., MATH. RES. LETT. 13 (2006), no. 5-6, 833--845.
21.
On the algebra of functions $scr Csp k$-extendable for each $k$ finite, PROC. AMER. MATH. SOC. 133 (2005), no. 2, 481--484
20.
Stanisl aw L ojasiewicz (1926--2002), WIADOM. MAT. 39 (2003), 183--190
19.
Wiesław Pawłucki, E.Bierstone,P.D.Milman
Differentiable functions defined in closed sets. A problem of Whitney, INVENT MATH 151 (2003), no. 2, 329--352
18.
A decomposition of a set definable in an o-minimal structure into perfectly situated sets, ANN. POLON. MATH. 79 (2002), no. 2, 171--184
17.
Wiesław Pawłucki, A.Piekosz
A remark on the Lion-Rolin preparation theorem for LA-functions, ANN. POLON. MATH. 71 (1999), no. 2, 195--197
16.
Wiesław Pawłucki, K.Kurdyka
Subanalytic version of Whitney's extension theorem, STUDIA MATH. 124 (1997), no. 3, 269--280
15.
Wiesław Pawłucki, E.Bierstone,P.D.Milman
Composite differentiable functions, DUKE MATH. J. 83 (1996), no. 3, 607--620
14.
On Gabrielov's regularity condition for analytic mappings, DUKE MATH. J. 65 (1992), no. 2, 299--311
13.
Points de Nash des ensembles sous-analytiques, (FRENCH) [NASH POINTS OF SUBANALYTIC SETS] MEM. AMER. MATH. SOC. 84 (1990), no. 425, vi+76 pp
12.
On relations among analytic functions and geometry of subanalytic sets, BULL. POLISH ACAD. SCI. MATH. 37 (1989), no. 1-6, 117--125 (1990)
11.
Extension of $Csp infty$ functions from sets with polynomial cusps, STUDIA MATH. 88 (1988), no. 3, 279--287
10.
Prolongement de fonctions ${mathcal C}sp infty$, (FRENCH) [EXTENSION OF ${MATHCAL C}SP INFTY$ FUNCTIONS] C. R. ACAD. SCI. PARIS SÉR. I MATH. 304 (1987), no. 7, 167--168
9.
Sur les points de Nash des ensembles sous-analytiques, (FRENCH) [ON THE NASH POINTS OF SUBANALYTIC SETS] BULL. POLISH ACAD. SCI. MATH. 34 (1986), no. 9-10, 541--545 (1987)
8.
Sur les points de Nash d'un ensemble sous-analytique, (FRENCH) [ON THE NASH POINTS OF A SUBANALYTIC SET] C. R. ACAD. SCI. PARIS SÉR. I MATH. 303 (1986), no. 17, 873--875
7.
Markov's inequality and $Csp infty$ functions on sets with polynomial cusps, MATH. ANN. 275 (1986), no. 3, 467--480
6.
Sur les points réguliers d'un ensemble semi-analytique, (FRENCH) [REGULAR POINTS OF A SEMIANALYTIC SET] BULL. POLISH ACAD. SCI. MATH. 32 (1984), no. 9-10, 549--553
5.
Le théoreme de Puiseux pour une application sous-analytique, (FRENCH) [THE PUISEUX THEOREM FOR A SUBANALYTIC MAPPING] BULL. POLISH ACAD. SCI. MATH. 32 (1984), no. 9-10, 555--560
4.
Examples of functions $mathcal Csp k$-extendable for each k finite, but not $mathcal Csp infty$-extendable, SINGULARITIES SYMPOSIUM---LOJASIEWICZ 70 (Kraków, 1996; Warsaw, 1996), 183--187, Banach Center Publ., 44, Polish Acad. Sci., Warsaw, 1998
3.
Approximation and extension of $Csp infty$ functions defined on compact subsets of Cn, DEFORMATIONS OF MATHEMATICAL STRUCTURES (ŁÓDŹ/LUBLIN, 1985/87), 283--295, Kluwer Acad. Publ., Dordre
2.
Markov's inequality and $Csp infty$-functions on subanalytic sets, A. HAAR MEMORIAL CONFERENCE, VOL. I, II (BUDAPEST, 1985), 703--709, Colloq. Math. Soc. János Bolyai, 49, North-Holland, Amsterdam, 1987
1.
Quasiregular boundary and Stokes's formula for a subanalytic leaf, SEMINAR ON DEFORMATIONS (LÓD?/WARSAW, 1982/84), 235--252, Lecture Notes in Math., 1165, Springer, Berlin-New York, 1985
Konferencje:
5.
The 11th Whitney Problems Workshop, Trynity College Dublin, Dublin, Irlandia, 2018-08-13 - 2018-08-17
4.
O-minimal structures in Number Theory and Analysis, Mathematisches Forschunginstitut, Oberwolfach, Niemcy, 2017-04-30 - 2017-05-06
3.
Workshop on Modern Applied Mathematics PK 2016, Politechnika Krakowska, Kraków, Polska, 2016-11-18 - 2016-11-20
2.
The 9 th Whitney Problems Workshop - 29.5-2.6.2016, Technion, Haifa, Izrael, 2016-05-29 - 2016-06-02
1.
The Eighth Whitney Problems Workshop, CIRM, Luminy, Francja, 2015-10-19 - 2015-10-23
Doktoranci (po 27 października 2003 roku)
Doktorant | Otwarcie | Zakonczenie |
---|---|---|
Małgorzata Czapla | 2008-03-27 | 2009-10-29 |
Krzysztof Grelowski | 2004-09-23 | 2007-10-25 |
Rafał Pierzchała | 2003-01-23 | 2005-06-23 |
Recenzje (po 27 października 2003 roku)
Recenzowany | Jednostka | Treść recenzji |
---|---|---|
Habilitacja: Wojciech Kucharz | Katedra Teorii Osobliwości | |
Profesura: Wojciech Kucharz | Katedra Teorii Osobliwości | |
Habilitacja: Janusz Adamus | Katedra Funkcji Rzeczywistych | |
Habilitacja: Marcin Bilski | Katedra Teorii Osobliwości |
Granty (realizowane po maju 2009 roku)
Tytuł | Rola | Rozpoczęcie | Zakończenie |
---|---|---|---|
Geometria o-minimalna i jej zastosowania w analizie | Kierownik | 2009-05-21 | 2012-05-20 |