Topological Methods in Nonlinear Analysis
Skrót:
TOPOL METHOD NONL AN
ISSN:
1230-3429
Rok | Punkty ministerialne | Impact Factor | Eigenfactor | Article influence |
---|---|---|---|---|
2022 | 100 | |||
2021 | 100 | 0.00187 | 0.556 | |
2020 | 100 | 0.00197 | 0.507 | |
2019 | 100 | 0.00225 | 0.514 | |
2018 | 35 | 0.0024 | 0.551 | |
2017 | 35 | 0.00197 | 0.476 | |
2016 | 30 | 0.00184 | 0.475 | |
2015 | 25 | 0.00202 | 0.587 | |
2014 | 35 | 0.00152 | 0.442 | |
2013 | 35 | 0.00212 | 0.567 | |
2012 | 35 | 0.00202 | 0.531 | |
2011 | 27 | 0.00236 | 0.608 | |
2010 | 27 | 0.00216 | 0.538 | |
2009 | 15 | 0.0019 | 0 | |
2008 | 10 | 0.00172 | 0 | |
2007 | 0 | 0.00191 | 0 |
Publikacje:
20.
19.
Strict C^1-triangulations in o-minimal structures, Topological Methods in Nonlinear Analysis vol. 52 No 2 (2018), 739-747
18.
Piotr Kalita, Grzegorz Łukaszewicz, Jakub Siemianowski
Rayleigh-Benard problem for Thermomicropolar Fluids, Topological Methods in Nonlinear Analysis vol. 52 (2018), 477-514
17.
16.
Hector Barge, Klaudiusz Wójcik
Mayer-Vietoris property of the fixed point index, Topological Methods in Nonlinear Analysis vol. 50 (2) (2017), 643-667
15.
14.
13.
Zhenhai Liu, Biao Zeng
12.
Marcin Mazur, Piotr Oprocha
Subshifts, rotations and the specification property, Topological Methods in Nonlinear Analysis vol. 46 (2015), 799-812
11.
10.
9.
8.
7.
6.
5.
4.
3.
2.
Conley index and permanence in dynamical systems, Topological Methods in Nonlinear Analysis vol. 12 (1998), 153-158