Topological Methods in Nonlinear Analysis
Skrót:
TOPOL METHOD NONL AN
ISSN:
1230-3429
Rok | Punkty ministerialne | Impact Factor | Eigenfactor | Article influence |
---|---|---|---|---|
2023 | 100 | 0.00118 | 0.404 | |
2022 | 100 | 0.00129 | 0.422 | |
2021 | 100 | 0.00187 | 0.556 | |
2020 | 100 | 0.00197 | 0.507 | |
2019 | 100 | 0.00225 | 0.514 | |
2018 | 35 | 0.0024 | 0.551 | |
2017 | 35 | 0.00197 | 0.476 | |
2016 | 30 | 0.00184 | 0.475 | |
2015 | 25 | 0.00202 | 0.587 | |
2014 | 35 | 0.00152 | 0.442 | |
2013 | 35 | 0.00212 | 0.567 | |
2012 | 35 | 0.00202 | 0.531 | |
2011 | 27 | 0.00236 | 0.608 | |
2010 | 27 | 0.00216 | 0.538 | |
2009 | 15 | 0.0019 | 0 | |
2008 | 10 | 0.00172 | 0 | |
2007 | 0 | 0.00191 | 0 |
Publikacje:
20.
19.
Strict C^1-triangulations in o-minimal structures, Topological Methods in Nonlinear Analysis vol. 52 No 2 (2018), 739-747
18.
Piotr Kalita, Grzegorz Łukaszewicz, Jakub Siemianowski
Rayleigh-Benard problem for Thermomicropolar Fluids, Topological Methods in Nonlinear Analysis vol. 52 (2018), 477-514
17.
16.
Hector Barge, Klaudiusz Wójcik
Mayer-Vietoris property of the fixed point index, Topological Methods in Nonlinear Analysis vol. 50 (2) (2017), 643-667
15.
14.
Zhenhai Liu, Biao Zeng, Shengda Zeng
13.
Zhenhai Liu, Biao Zeng
12.
Marcin Mazur, Piotr Oprocha
Subshifts, rotations and the specification property, Topological Methods in Nonlinear Analysis vol. 46 (2015), 799-812
11.
10.
9.
8.
7.
6.
5.
4.
3.
2.
Conley index and permanence in dynamical systems, Topological Methods in Nonlinear Analysis vol. 12 (1998), 153-158