Katedra Geometrii - lista publikacji
Nadjednostka:
[2025] [2024] [2023] [2022] [2021] [2020] [2019] [2018] [2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2005] [2004] [2003] [2002] [2001] [2000] [1999] [1998] [1997] [1996] [1995] [1994] [1993] [1992] [1991] [1990] [1989] [1988] [1987] [1986] [1985] [1984] [1983] [1982] [1980] [1979] [1977] [1976] [1973] [1972] [1971] [1968]
1-16 z 16.
2004
16.
Włodzimierz Mikulski, J.Kurek
The natural functions on the cotangent bundle of higher order vector tangent bundles over fibered manifolds, CENT. EUR. J. MATH. 2 (2004), no. 5, 801-810 (electronic)
15.
Włodzimierz Mikulski, J.Kurek
Higher order jet prolongations type gauge natural bundles over vector bundles, ANN. ACAD. PEDAGOG. CRAC. STUD. MATH. 4 (2004), 111-122
14.
The natural linear operators $wedge^pT^* o TT^{r*}$, ANN. SOC. MATH. POLON. COMMENTATIONES MATH. XLIV(1)(2004), 127-136.
13.
Miroslav Kures, Włodzimierz Mikulski
Natural operators lifting vector fields to bundles of Weil contact elements, Czechoslovak Mathematical Journal vol. 54(129) (2004), 855-867
12.
11.
Włodzimierz Mikulski, J.Tomas
Liftings of projectable projectable vector fields into 1-forms on higher order cotangent bundles over fibered fibered manifolds, DEMONSTRATIO MATH. XXXVII(2)(2004), 447-462.
10.
Włodzimierz Mikulski, J.Kurek
The natural affinors on the (r,s,q)-cotangent bundle of a fibered manifold, ANN. POLON. MATH. 83.1(2004), 57-64.
9.
Natural operators lifting functions to affinors on higher order cotangent bundles, ANN. POLON. MATH. 83.1(2004), 49-55.
8.
Włodzimierz Mikulski, M.Doupovec.W.Mikulski
Horizontal extension of connections into (2)-connections, DEMONSTRATIO MATH. XXXVII (4)(2004), 963-975.
7.
Włodzimierz Mikulski, J.Kurek
Some natural operators in linear vector fields, ANN. UNIV. MARIAE CURIE-SKLODOWSKA SECT. A LVIII (2004), 87-95.
6.
The natural affinors on the r-jet prolongations of a vector bundle, DEMONSTRATIO MATH. VOL. XXXVII no. 3 (2004), 709-717
5.
Product preserving bundles on foliated manifolds, ANN. POLON. MATH. 84.1(2004), 67-74.
4.
Barbara Opozda, O.Kowalski,Z.Vlasek
A classification of locally homogeneous connections on 2-dimensional manifolds via group-theoretical approach, CENT. EUR. J. MATH. VOL. 2 no. 1 (2004), 87-102 (16)
3.
Locally Homogeneous Affine Connections on Compact Surfaces, PROC. AMER. MATH. SOC. VOL. 132 no. 9 (2004) 2713-2721
2.
A classification of locally homogeneous connections on 2-dimensional manifolds, DIFFERENTIAL GEOM. APPL. 21 (2004) 173-198
1.
Robert Wolak, BoyomM.N.WolakR.
Local structure of Koszul-Vinberg and of Lie algebroids, BULL. SCI. MATH. 128 (2004) 467-479