Katedra Geometrii - lista publikacji
Nadjednostka:
[2025] [2024] [2023] [2022] [2021] [2020] [2019] [2018] [2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2005] [2004] [2003] [2002] [2001] [2000] [1999] [1998] [1997] [1996] [1995] [1994] [1993] [1992] [1991] [1990] [1989] [1988] [1987] [1986] [1985] [1984] [1983] [1982] [1980] [1979] [1977] [1976] [1973] [1972] [1971] [1968]
1-17 z 17.
2001
17.
Piotr Kobak, A.Swann
HyperKähler potentials via finite-dimensional quotients, GEOM. DEDICATA 88 (2001), no. 1-3, 1--19
16.
Piotr Kobak, A.Swann
The hyperKähler geometry associated to Wolf spaces, BOLL. UNIONE MAT. ITAL. SEZ. B ARTIC. RIC. MAT. (8) 4 (2001), no. 3, 587--595
15.
Piotr Kobak, A.Swann
HyperKähler potentials in cohomogeneity two, J. REINE ANGEW. MATH. 531 (2001), 121--139
14.
The jet prolongations of fibered fibered manifolds and the flow operator, PUBL. MATH. DEBRECEN 59 (2001), no. 3-4, 441--458
13.
Włodzimierz Mikulski, J.Kurek
The natural operators lifting 1-forms to the r-jet prolongation of the cotangent bundle, APPL. PROC. CONF. OPAVA 2001, Silesian Univ. Opava (2001), 215-227.
12.
Liftings of 1-forms to the bundle of affinors, ANN. UNIV. MARIAE CURIE-SK3ODOWSKA SECT. A 55 (2001), 109--113
11.
On the product preserving bundle functors on $k$-fibered manifolds, DEMONSTRATIO MATH. 34 (2001), no. 3, 693--700
10.
Product preserving gauge bundle functors on vector bundles, COLLOQ. MATH. 90 (2001), no. 2, 277--285
9.
The natural affinors on generalized higher order tangent bundles, REND. MAT. APPL. (7) 21 (2001), no. 1-4, 339--349
8.
Natural affinors on $(Jsp {r,s,q}(!,{Bbb R}sp {1,1})sb 0)sp *$, COMMENT. MATH. UNIV. CAROLIN. 42 (2001), no. 4, 655--663
7.
The natural affinors on $(Jsp rTsp {*,a})$, ACTA UNIV. PALACK. OLOMUC. FAC. RERUM NATUR. MATH. 40 (2001), 179--184
6.
2-forms induced by Lagrangians on Weil bundles, DEMONSTRATIO MATH. 34 (2001), no. 4, 955--967
5.
The natural transformations $Tsp *Tsp {(r)} o Tsp *Tsp {(r)}$, Note Mat. vol. 20(1)(2000/01) (2001), 81-87
4.
The linear natural operators transforming affinors to tensor fields of type $(0,p)$ on Weil bundles, Note Mat. vol. 20(1)(2000/01) (2001), 89-93
3.
On the realizability of projectively flat connections on surfaces, J. GEOM. 70 (2001), no. 1-2, 133--138
2.
Robert Wolak, L.DiTerlizzi,J.Konderak,A.M.Pastore
$scr K$-structures and foliations, ANN. UNIV. SCI. BUDAPEST. EÖTVÖS SECT. MATH. 44 (2001), 171--182 (2002)
1.
The natural operators transforming affinors to tensor fields of type (4,4), Publicationes Mathematicae vol. 59, no. 3-4 (2001), 363-378