dr hab. Marek Karaś
Jednostki:
- Wydział Matematyki i Informatyki UJ
 - Instytut Matematyki
 - Zakład Matematyki Finansowej
 
Habilitacja Otwarcie: 2012-03-29, Zamknięcie: 2013-02-07
Publikacje:
	32.
		Marek Karaś, Anna Serwatka	
	
		Discrete-time market models from the small investor point of view and the first fundamental-type theorem, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica Xvi vol. 16 (2017), 17-40	
	31.
		Eric Edo, T. Kanehira, Marek Karaś, Shigeru Kuroda	
	
		Separability of wild automorphisms of a polynomial ring, Transformation Groups vol. 18 (2013), 81–96	
	30.
	29.
		There is no tame automorphism of C^3 with multidegree (3,4,5), Proceedings of the American Mathematical Society vol. 139, no. 3 (2011), 769-775	
	28.
	26.
	25.
	24.
	23.
		Marek Karaś, KaraśM.	
	
		 A note on triangular automorphisms, UNIV. IAGEL. ACTA MATH. 46 (2008) 71-74.	
	22.
		Marek Karaś, KaraśM.,ZielińskiA.P.	
	
		Boundary-value recovery by the Trefftz approach in structural inverse problem, COMM. NUMER. METHODS ENGRG. 24 (2008) 605-625.	
	21.
		Marek Karaś, KaraśM.	
	
		A note on geometric degree of finite extensions of mappings from a smooth variety, BULL. POLISH ACAD. SCI. MATH. 56 no. 2 (2008), 105 - 108	
	20.
		Geometric degree of finite extensions of mappings from a smooth variety, J. PURE APPL. ALGEBRA 212 (2008), 1145-1148	
	19.
		Extension of polynomial mapping with a given Lojasiewicz exponent, UNIV. IAGEL. ACTA MATH. 47 (2007), 77-79	
	18.
		Locally Nilpotent Monomial Derivations, BULL. POLISH ACAD. SCI. MATH. VOL. 52, no. 2, (2004) ,119--120	
	17.
		Marek Karaś, B.Szybiński,A.P.Zielinski	
	
		Folded-plate structures with openings – analysis and optimization,, COMP. ASS. MECH. ENGNG SC., 8 (2003), 479-493	
	16.
		Marek Karaś, B.Szybiński,A.P.Zielinski	
	
		D plate structures: optimization using special T-elements,,  Proc. of the V Word Congress on Computational Mechanics, Vienna, Austria (2002).
	
	15.
		Marek Karaś, KaraśM.,ZielińskiA.P.	
	
		Hybrid Trefftz least square element for plane elasticity, STROJ. CAS. (J. MECH. ENGNG.) 53 no.1 (2002), 24-35.	
	14.
		Finite extensions of mappings of finite sets, BULL. POLISH ACAD. SCI. MATH. 50 (2002), no. 2, 237--239	
	13.
		The set of points at which a morphism of affine schemes is not finite, COLLOQ. MATH. 92 (2002), no. 1, 59--66	
	12.
		Marek Karaś, ZielińskiA.P.,SaneckiH.,KaraśM.	
	
		Effectiveness of the Trefftz method in different engineering optimization procedures, COMP. ASS. MECH. ENGNG SC., 8 (2001), 479-493	
	11.
		Geometric degree of generically finite extensions, EFFECTIVE METHODS IN ALGEBRAIC AND ANALYTIC GEOMETRY, 2000 (Kraków). Univ. Iagel. Acta Math. No. 39 (2001), 147--151	
	10.
		Finite extensions of mappings from a smooth variety, ANN. POLON. MATH. 75 (2000), no. 1, 79--86	
	9.
		Marek Karaś, KaraśM.,ZielińskiA.P.	
	
		Parametric structural shape optimization using global Trefftz approach, J. THEORET. APPL. MECH. 38 no.2 (2000), 285-296	
	8.
		Marek Karaś, KaraśM.	
	
		Elementary proof of finitely generateness of a subring of  k[t], PROC. XXI CONFERENCE OF COMPLEX ALGEBRAIC AND ANALYTIC GEOMETRY, ŁÓDŻ, POLAND (2000), 13-16.	
	7.
		Birational finite extensions, J. PURE APPL. ALGEBRA 148 (2000), no. 3, 251--253	
	6.
		Geometric degree of finite extensions of projections, EFFECTIVE METHODS IN ALGEBRAIC AND ANALYTIC GEOMETRY (BIELSKO-BIA3A, 1997). Univ. Iagel. Acta Math. No. 37 (1999), 109--119	
	5.
		Marek Karaś, SaneckiH.,ZielińskiA.P.,KaraśM.	
	
		Engineering optimization with different object functions - Trefftz approach, PROC. XIV PCCMM '99, RZESZÓW, POLAND (1999), 315-316.	
	4.
		Marek Karaś, KaraśM.,ZielińskiA.P.	
	
		Shape optimization of helical spring cross-section by Trefftz approach, PROC. VII INT. CONF. “NUMERICAL METHODS IN CONTINUUM MECH.”, STARA LEŚNA, SLOVAK REPUBLIC (1998), 29-34.	
	3.
		Marek Karaś, KaraśM.,ZielińskiA.P.	
	
		Application of Trefftz complete functional system to stress analysis in helical spring with an arbitrary wire cross-section, STROJ. CAS. (J. MECH. ENGNG.) 49 no. 6 (1998), 426-437	
	2.
		An estimate of the geometric degree of an extension of some polynomial proper mappings, UNIV. IAGEL. ACTA MATH. no. 35 (1997), 131--135	
	1.
		There is no tame automorphism of C^3 with multidegree (3,4,5), PROC. AMER. MATH. SOC. PROC. AMER. MATH. SOC. VOL. 139 (3) 2011, 769-775	
Doktoranci (po 27 października 2003 roku)
| Doktorant | Otwarcie | Zakonczenie | 
|---|---|---|
| Anna Serwatka | 2016-06-30 | 2025-01-23 | 

