mgr Marcin Sendera

Jednostki:

  • Wydział Matematyki i Informatyki UJ
  • Instytut Informatyki i Matematyki Komputerowej
  • Katedra Uczenia Maszynowego

Publikacje:

12.
11.
Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Bengio Emmanuel, Alexandre Adam, Jarrid Rector-Brooks, Yoshua Bengio, Glen Berseth, Nikolay Malkin
Amortizing intractable inference in diffusion models for vision, language, and control, Advances in Neural Information Processing Systems [NeurIPS] vol. 37 (2024), 1-35
10.
Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre Adam, Yoshua Bengio, Nikolay Malkin
Improved off-policy training of diffusion samplers, Advances in Neural Information Processing Systems [NeurIPS] vol. 37 (2024), 81016-81045
9.
Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong
Iterated denoising energy matching for sampling from boltzmann densities, International Conference on Machine Learning [ICML] vol. Proceedings of Machine Learning Research (2024), 760-786
6.
Hypershot: Few-shot learning by kernel hypernetworks, IEEE Workshop on Applications of Computer Vision [WACV](MAIN), (2023), 2469--2478
4.
Missing Glow Phenomenon: learning disentangled representation of missing data, International Conference on Neural Information Processing [ICONIP] vol. vol 1516 (2021), 196-204
3.
Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj, Massimiliano Patacchiola, Przemysław Spurek, Tomasz Trzciński, Zięba Maciej
Non-Gaussian Gaussian Processes for Few-Shot Regression, Advances in Neural Information Processing Systems [NeurIPS](MAIN) vol. 34 (2021), 10285-10298
2.
‪Gregory S. Duane, Witold Dzwinel, Marcin Sendera
Supermodeling: the next level of abstraction in the use of data assimilation, International Conference on Computational Science [ICCS] vol. vol. Lecture Notes in Computer Science book series (LNCS, vol. 12142) (2020), 133-147
1.
Flow-based SVDD for anomaly detection, International Conference On Machine Learning (workshop Track) (2020),

Konferencje:

1.
Thirty-seventh International Conference on Machine Learning, The International Machine Learning Society, Wiedeń, Austria (Virtual), 2020-07-12 - 2020-07-18

Granty (realizowane po maju 2009 roku)

TytułRolaRozpoczęcieZakończenie
Jak uczyć się szybciej: w kierunku lepszej adaptacji w procesie meta-uczenia.Kierownik2023-02-072025-08-06