doc. dr hab. Marek Słociński
Publikacje:
21.
20.
Generalized powers and measures, Opuscula Mathematica vol. 41 (2021), 747-754
19.
A unified approach to the decomposition theorems in Baer ∗-rings, Results in Mathematics vol. 76 (2021), Article number: 131
18.
17.
On the commuting isometries, Linear Algebra and Its Applications vol. 516 (2017), 167-185
16.
15.
Compatible pairs of commuting isometries, Linear Algebra and Its Applications vol. 479 (2015), 216-269
14.
13.
12.
Marek Słociński, W.Mlak
Quantum phase and circular operators, UNIV. IAGEL. ACTA MATH. no. 29 (1992), 133--144
11.
Weighted square summable and generalized harmonizable sequences, PROBAB. MATH. STATIST. 12 (1991), no. 1, 99--111
10.
Models for doubly commuting contractions, ANN. POLON. MATH. 45 (1985), no. 1, 23--42
9.
Marek Słociński, H.Salehi
On normal dilation and spectrum of some classes of second order processes, BOL. SOC. MAT. MEXICANA (2) 28 (1983), no. 1, 31--48
8.
Unitary dilation of two-parameter semigroups of contractions, II. ZESZYTY NAUK. UNIW. JAGIELLON. PRACE MAT. no. 23 (1982), 191--194
7.
A note on semigroups of the $Csb{
ho }$ class, ZESZYTY NAUK. UNIW. JAGIELLON. PRACE MAT. no. 23 (1982), 189--190
6.
Characteristic functions of doubly commuting contractions, BULL. ACAD. POLON. SCI. SÉR. SCI. MATH. 28 (1980), no. 7-8, 351--360 (1981)
5.
On the Wold-type decomposition of a pair of commuting isometries, ANN. POLON. MATH. 37 (1980), no. 3, 255--262
4.
A Szegö type property for two doubly commuting contractions, ANN. POLON. MATH. 36 (1979), no. 1, 49--53
3.
Isometric dilation of doubly commuting contractions and related models, BULL. ACAD. POLON. SCI. SÉR. SCI. MATH. ASTRONOM. PHYS. 25 (1977), no. 12, 1233--1242
2.
Normal extensions of commutative subnormal operators, Studia Mathematica vol. 54 no. 3 (1976), 259-266
1.
Unitary dilation of two-parameter semi-groups of contractions, BULL. ACAD. POLON. SCI. SÉR. SCI. MATH. ASTRONOM. PHYS. 22 (1974), 1011--1014