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The title of the thesis is ”Convex and symplectic properties of Monge-Ampère-type
operators on compact Kähler manifolds with holomorphic torus actions”. It builds on the
papers [Myg21a] and [Myg21b], but as the thesis is written as a monograph, in addition to
the original work of the two papers, it also contains a generous introduction to the subject of
torus actions on compact Kähler manifolds and the associated g-Monge-Ampère equation.

1. BACKGROUND MATERIAL

I will start by recalling some basic definitions and results that provide the context to the
original work. All of this is explained very nicely in sections 1-5 of the thesis.

1.1. Symplectic manifolds. Let M be a smooth manifold of even real dimension 2n. A
two-form ω onM is said to be symplectic if it closed and non-degenerate. The pair (M,ω)
is then called a symplectic manifold, and we see that it comes with a prescribed volume
form ωn (or sometimes ωn/n!).

1.2. Momentum maps. Assume that a Lie group G acts on M leaving ω invariant. Note
that any left-invariant vector field X on G induces a vector field X# on M . The action is
said to be Hamiltonian if there exists a so called momentum map m from M to the dual of
the Lie algebra of G such that for any X:

d〈m(x), X〉 = ωx(X#, ·).

The momentum map is typically also assumed to be G-invariant.

1.3. Momentum polytopes. A celebrated result of Atiyah [Ati82] and independently Guilleman-
Sternberg [GS82] says that whenM is compact andG is a compact torus Tk then the image
of the momentum map is a compact convex polytope ∆. If the dimension of the torus is n,
making the action completely integrable, then Delzant proved that ∆ is ”Delzant” [Del88],
and in particular M carries the structure of a toric projective variety.

When M is toric, the pushforward of the volume form ωn by the momentum map gives
the Lebesgue measure on ∆.

1.4. Symplectic reduction. To understand what happens with the pushforward of the
volume form ωn by the momentum map when the action is not completely integrable
one needs to introduce the key notion of symplectic reduction, due to Marsden-Weinstein
[MW74].

Let p be a regular value of the momentum map and assume that T k acts freely on
m−1(p). Then Mp := m−1(p)/Tk is a manifold called the reduced space, and interest-
ingly it inherits a symplectic structure σp from M , by demanding that π∗σp = i∗ω, where
π is the projection from m−1(p) to Mp and i is the inclusion of m−1(p) in M .
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1.5. Duistermaat-Heckman measure. We can now come back to the question of what
happens if one pushes forward to volume form ωn by the momentum map to the moment
polytope. Duistermaat-Heckman [DH83] showed that we get a measure on ∆ whose den-
sity at a point p is equal to

∫
Mp

σn−kp (up to a dimensional constant). The also described
how σp varies with p, implying that the function

∫
Mp

σn−kp is piecewise polynomial in p.

1.6. Kähler manifolds. We now assume that (M,ω) is not only symplectic, but even
Kähler, meaning that it has a complex structure adapted to the symplectic one. In particular,
locally one can then find a potential of ω, i.e. a function u such that ω = i∂∂̄u.

1.7. Kähler potentials and ω-psh functions. A smooth function φ on M is said to be a
Kähler potential if ωφ := ω + i∂∂̄φ is Kähler. The space of Kähler potentials is denoted
by H(M,ω). A weaker notion is that of a ω-psh function. φ is said to be ω-psh if locally
u + ψ is psh (where u is a local potential for ω). We then see that ωφ := ω + i∂∂̄φ
is not necessarily a Kähler form but a closed positive (1, 1)-current. The space of ω-psh
functions is denoted by PSH(M,ω).

1.8. Monge-Ampère measures. The (complex) Monge-Ampère measure MAω(φ) of a
C2 ω-psh function φ is defined as ωnφ . Since the wedge products of currents need not be
well-defined, when φ is singular special care has to be taken to give meaning to MAω(φ).
For φ locally bounded this was achieved by Bedford-Taylor [BT82]. For more general φ
Boucksom-Eyssidiuex-Guedj-Zeriahi [BEGZ10] introduced the so-called non-pluripolar
Monge-Ampère, here also denoted by MAω(φ). For φ locally bounded we have that∫

M

MAω(φ) =

∫
M

ωn,

but when φ is not locally bounded it can happen that∫
M

MAω(φ) <

∫
M

ωn.

φ is said to have full mass if there is equality, and the space of full mass potentials is
denoted by E(M,ω).

1.9. Optimal transport and the (real) g-Monge-Ampère equation. Given two mea-
sures µ and ν on Rn the optimal transport problem seeks to find the map T which transports
µ to ν, i.e. such that T∗µ = ν, and which among all those transport maps minimizes the
cost ∫

Rn

c(x, Tx)dµ(x),

where c(x, y) is some given cost function. Here we will focus on the case of the quadratic
cost function c(x, y) := |x− y|2. It turns out that, given some mild assumptions on µ and
ν, the optimal transport map will be of the form∇φwhere φ is a convex function. That∇φ
transports µ = f(x)dx to ν = g(y)dy can be rewritten as the so-called g-Monge-Ampère
equation

g(∇φ) detD2φ = f.

A fundamental theorem of McCann [McC95] says that as long as µ and ν are probability
measures and µ vanishes on Borel subsets of Hausdorff dimension less than or equal to
n − 1, then there is a transport function of the form ∂φ (i.e. we take the subgradient
map, since the gradient might not be defined everywhere), and ∂φ is uniquely determined
µ-everywhere.
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2. TORUS ACTIONS ON COMPACT KÄHLER MANIFOLDS

I will now discuss the results presented in Section 6 of the thesis.

2.1. Principle Tk
C-bundle. Now assume that there is a Hamiltonian Tk-action on M . As

explained in Section 5 of the thesis this action can be extended to a holomorphic action
of the complex torus Tk

C. It is also shown in Section 5 that an open dense subset of M ,
here denoted M0, will have the structure of a holomorphic principle Tk

C-bundle over some
Kähler manifold W 0. Let π denote the projection to W 0.

The space of Tk-invariant Kähler potentials is denoted by HTk(M,ω) while the space
of Tk-invariant ω-psh functions is denoted by PSHTk(M,ω).

2.2. Local potentials. Proposition 6.8 states that there is a covering {Ui} ofW 0 such that
ω has a Tk-invariant potential ui on each π−1(Ui). Ifwj are local holomorphic coordinates
on Ui and zj = xj+iyj are coordinates on Tk

C = (C/iZ)n then ui(x, y, w) is independent
of y and convex in x. Moreover the momentum map m is locally given by ∇xui. This is
stated in Proposition 6.9.

Given φ ∈ HTk(M,ω) then clearly uφ,i := ui + φ is a local potential for ωφ, and the
corresponding momentum map of (M,ωφ) is of course given by mφ = ∇xuφ,i.

2.3. The partial Legendre transform. Recall that if u(x) is a convex function on Rk
then its Legendre transform u∗(p) is the convex function on Rk defined as

u∗(p) := sup
x∈Rk

{〈p, x〉 − u(x)}.

The Legendre transform plays a key role in convex analysis, as explained in Section 2 of
the thesis.

Thus given the local potential ui(x, y, w) (or more generally uφ,i) one can perform the
Legendre transform in the x-variables:

u∗i (p, w) := sup
x∈Rk

{〈p, x〉 − u(x, y, w)}.

This is then convex in p, and Kiselman’s minimum princle [Kis78] also gives that it is
plurisuperharmonic in w.

2.4. Symplectic reduction revisited. Let p be a regular value of the momentum map m.
We saw above that symplectic reduction yields a symplectic manifold (Mp, σp). It is easy
to see that one locally can identify Mp with W 0, giving it a complex structure. The key
result Theorem 6.10 now states that locally

σp(w) = −i∂∂̄u∗i (p, w),

i.e. −u∗i (p, w) is a local Kähler potential for σp.

2.5. Reduction currents in more singular cases. Since the partial Legendre transform is
robust and allows singularities, Myga can define the reduction current σφ,p := −i∂∂̄u∗φ,i(p, w)

for any φ ∈ PSHTk(M,ω).
In Proposition 6.11 and Theorem 6.12 shows that the operation of taking the reduction

form or some power of it is continuous under decreasing limits of potentials in ETk(M,ω),
and also continuous in p.
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2.6. Density of the volume form. Note that the local density of the volume form ωn with
respect to the local volume form dx∧ dy ∧ dw ∧ dw̄ is given by detD2ui(x, y, w), where
D2 denotes the complex Hessian. Theorem 6.14 gives the following explicit formula for
this density:

detD2ui(x, y, w) = (−1)n−k detD2
wu
∗
i (∇xu(x, y, w), w) detD2

xu(x, y, w).

Here D2
w denotes the complex Hessian in the variables w while D2

x denotes the real Hes-
sian in the variables x. In the proof Myga explicitly computes the different determinants,
expertly finding all cancellations.

3. COMPLEX OPTIMAL TRANSPORT AND THE (COMPLEX) g-MONGE-AMPÈRE
EQUATION

Motivated by the study of Kähler-Ricci solitons Berman and I introduced a g-Monge-
Ampère equation in the Kähler setting [BWN14].

3.1. g-Monge-Ampère measure. Let as before (M,ω) be a compact Kähler manifold
with a Hamiltonian Tk-action. Let φ be a Tk-invariant Kähler potential and let g be a
positive continuous function on the momentum polytope ∆. Then

MAg(φ) := g(mφ)MAω(φ)

defines a measure on M called the g-Monge-Ampère measure of φ. However, at the outset
it is less clear how to extend this definition for more general φ, given that the moment map
mφ might not be properly defined everywhere.

In Section 7 Myga provides a definition of the g-Monge-Ampère operator mostly fol-
lowing that in [BWN14], but with more details. He also establishes its key continuity
properties, such as Theorem 7.5, which states that if φj ∈ ETk(M,ω) either decreases to a
full mass potential φ or increases almost everywhere to φ, then

MAg(φj)→MAg(φ)

weakly.

3.2. g-Monge-Ampère equation. Let µ be a Tk-invariant measure on M which puts no
mass on pluripolar sets and such that

∫
M
µ =

∫
M
ωn. Let g be a positive continuous

function on ∆. We are looking to solve g-Monge-Ampère equation

MAg(φ) = µ.

As said above the motivation for considering this equation comes from the study of Kähler-
Ricci solitons, and is described briefly in Section 8.1 of the thesis.

In Section 8.2 Myga proves the existence of a solution in the toric case, i.e. k = n. The
idea is to reduce it to the real optimal transport problem, and the theorem of McCann. The
issue is that McCann’s theorem assumes that µ puts no mass on sets with Hausdorff dimen-
sion less than or equal to n− 1, so in particular point masses are not allowed. However, a
point mass in Rn corresponds to a measure with support on a torus in M , and so should be
allowed in the complex setting. Myga solves this by considering the dual transport prob-
lem, i.e. instead of transporting µ to ν we transport ν to µ. The point is that ν = g(p)dp is
assumed to be nice, so by McCann’s theorem there is a solution to the dual problem. Now,
let v denote the convex function whose subgradient solves the dual transport problem. If v
happened to be smooth and strictly convex then the gradient of v would be the inverse of
the gradient of the Legendre transform v∗, i.e. v∗ would solve the original problem. In fact,
by approximating v by smooth and strictly convex functions vn Myga proves that v∗ does
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indeed induce an unique solution to the (complex) g-Monge-Ampère equation. For this he
uses various quite subtle convergence properties of convex functions and their Legendre
transforms established in Section 2.

In Section 8.3 Myga solves the g-Monge-Ampère equation on general manifolds using
instead a variational method, mostly following [BWN14], but again with more detail. He
also use the formula for the density of Monge-Ampère measures proven in Section 6 to
prove uniqueness (up to constants) given that the momentum maps are equal (Corollary
8.12).

4. COMMENTS AND QUESTIONS

4.1. p. 70. Is the first part of the argument on page 70 using the coisotropic embedding
theorem a proof of Theorem 5.27? Could this argument be used to calculate the density of
the volume form ωn?

4.2. p. 77. I would have liked it to be more clearly said that u∗ψ(p, w) is the partial Le-
gendre transform introduced by Kiselman, and that the plurisuperharmonicity of u∗ψ(p, w)
in w is known as Kiselman’s minimum principle.

4.3. p. 78. Does the plurisuperharmonicity of u∗ψ follow from Theorem 6.10 (by approx-
imation)? Is the proof of Theorem 6.10 related to Kiselman’s proof of his minimum prin-
ciple?

I guess there are descriptions of Kähler potentials for the Kähler form on the reduced
space in the literature, e.g. [BG04] and references therein. How does Theorem 6.10 relate
to those?

4.4. p. 80. Is this definition new or does it exist in the literature? If p is not a regular point
of mφ, what kind of singularities can one expect of u∗φ(p, w) and σφ(p, w)? Are there easy
examples?

4.5. p. 82. If one formulates the formula of Theorem 6.14 as a relationship between
densities of measures on M , the reduced space Mred and Rn, is it then true in the general
symplectic setting, or does it rely on the Kähler structure?

Integrating along the fibers of the moment map, do we then get a new proof of Duistermaat-
Heckman’s theorem?

4.6. p. 86. I believe that the envelopes used here in the construction of the g-Monge-
Ampère measure are special cases of those used in [BWN14]. And I don’t think you can
get all step functions from using a particular lexicographic order. But maybe you are not
really thinking of the lexicographic order? Anyway, you should be able to get envelopes
from subsets of ∆, so it is not a serious issue.

4.7. p. 88. To me the proof that MA(Pqφ) is supported on {Pqφ = φ} seems more
complicated than that in [BWN14]. Was there a specific reason for doing it your way?

4.8. p. 108. A more naive approach to Prop. 8.11 and Cor. 8.12 would be to say that if
u, v are smooth, mu = mv and MAg(u) = MAg(v) then MA(u) = MA(v), and hence
u = v + C, and then use some approximation argument. Does this also work or are there
issues?

Does thinking of the g-Monge-Ampère equation as a family of optimal transport prob-
lems on the fibers of the Tk

C-action lead to an alternative definition of the g-Monge-Ampère
operator, and if so could it be used to define it for more general g than the positive contin-
uous ones considered here and in [BWN14]?
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5. OPINIONS

The preliminary parts of the thesis gives an excellent introduction to the topic of torus
actions on symplectic and Kähler manifolds. It is well-structured, clearly written with lucid
arguments. Thanks to this I learned a lot from reading it.

In the thesis Myga shows great technical skill, mastering methods of Lie group theory,
symplectic geometry and pluripotential theory.

The connection between Kiselman’s partial Legendre transform and symplectic reduc-
tion exhibited in Theorem 6.10 is striking, and the formula relating the densities in The-
orem 6.14 is very pretty. I have personally used the partial Legendre transform in several
papers, and I believe this formula could have been used to prove some of my results.

The paper [BWN14] has a lot of citations, but for various reasons was never published,
and it also suffers from a lack of detail in several places. I am therefore happy to see Myga’s
nice alternative proof of existence in the toric case, as well as his detailed exposition of the
variational proof in the general case. The new approach of Myga looking at it as a family
of optimal transport problems on the fibers of the action is also exciting.

In conclusion I am impressed by the thesis and of course recommend that Myga be
awarded a doctorate on the basis of it.
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