Theoretical Computer Science Department
Faculty of Mathematics and Computer Science
Jagiellonian University

Geometric and weight constraints
in Online Interval Coloring

Patryk Mikos

PhD dissertation

Supervisor:

prof. dr hab. Pawet Idziak

Co-supervisor:
dr Grzegorz Gutowski

Krakoéw, January 2020






Contents

Introduction 3
Preliminaries 7
1 Online Interval Coloring with Bandwidths 9
1.1 Introduction . . . . .. ... ... ... 9
111 Previouswork. . .. .. ... ... .. o 9

112 Ourresult . ... ... ... ... . ... . o 9

1.2 Presenterstrategy . . . .. ... ... . ... ... ... ... ... 10
121 Strategy description . . . . ... ... L oL L 10

122 Strategyanalysis . ... .. ... ... ... ... .. .. ... 11

1.2.3 Scalable strategies . . . . ... ... .. ... . L. 13

124 Experimentalresults . ... ... ... ... .. ... ... . ... 14

1.3 UnitIntervals . . . ... ... . . .. .. 15

2 Different Interval Graph Representations in Online Unit Interval Coloring 17

2.1 Introduction . . . . . . . . . . e 17
211 Previouswork. . . . .. ... 17

212 Ourresults. . . . . . .. 18

22 UpperBounds . . .. .. ... ... ... ... 18
23 LowerBounds . . ... ... ... .. 19
23.1 GraphRepresentation . . .. ... .................. 20

2.3.2 Proper Interval Representation . . . ... ... ........... 25

2.3.3 Unit Interval Representation . ... ... ... ... ... ..... 27

3 Online Interval Coloring of Short Intervals 33
3.1 Introduction . .. ... ... .. ... 33
311 Ourresults. . . . . . ... e 33

32 Algorithm . . ... ... ... .. 34
33 LowerBounds . . . ... ... .. ... 36
331 Warm-up. .. ... ... .. ... 40

332 Theb5/3LowerBound . ... ......... ... ... ..... 41

333 The7/4LowerBound . ... ..................... 43

334 Theb5/2LowerBound . ... ... ... ......... .. ..... 45

34 OpenProblems . .................... ... .. ... ... 48



Contents

4 FirstFit in Online Interval Coloring of Short Intervals with restricted Band-

widths 49
41 Introduction . . . ... ... .. .. 49
411 OurResults ... ... ... ... . .. 49

4.2 FirstFit Online o-Interval Coloring with Bandwidths. . . . ... ... .. 50
4.3 FirstFit Online o-Interval Coloring with [«, ]-Bandwidths. . . . . . . .. 54
4.4 FirstFit Online Unit Interval Coloring with Bandwidths.. . . . . . .. .. 56
4.5 FirstFit Online Unit Interval Coloring with [0, §]-Bandwidths. . . . . .. 57
46 Openproblems . . ... ... ... ... ... ... .. ... ... ... 63
5 Efficient Enumeration of Non-isomorphic Interval Graphs 65
51 Introduction . . ... ... ... ... 65
51.1 Previouswork. . . . ... ... ... 65

512 Ourresults. . . . ... ... 66

52 Preliminaries. . . . . . .. ... 66
521 PQ-trees . . . . . ... 67

522 MPQ-trees . . . . . .. 67

523 Knownresults. . . . .. ... 68

5.3 Canonical MPQ-tree . . . . . . . . . . .. . ... 70
54 C(lassification of Interval Edges . . . . .. ... ............... 71
5.4.1 Both vertices belong to the same P-node . . . . ... ........ 73

5.4.2 Both vertices belong to the same Q-node . . ... ... ... ... 74

5.4.3 Vertices in differentnodes. . . . . ... ... Lo 75

55 ListingInterval Edges . .. ... ... ... ... ... . ... . ... ... 82
5.6 The Enumeration Algorithm . . . . . ... ... ... ... ... .. 85
57 Performance . . .. .. ... 86
Bibliography 89



Introduction

Some natural problems with time-dependent conflicts, like job scheduling, resource
allocation, or network multiplexing are often modeled using intervals on the real line.
The real axis naturally represents the time, and an interval can represent a job that
needs to be executed in some time window. The fact that two intervals intersect means
that the corresponding jobs need to be assigned to different resources (machines, work-
ers, etc.), as the single resource cannot be assigned to different jobs for the same time.
There is a natural graph representation of these problems, where each interval corre-
sponds to a vertex, and we introduce an edge between the vertices when the intervals
intersect. In general, much more complicated conflicts can be represented by different
kinds of graphs. However, in this thesis we focus only on those conflicts that can be
expressed by intersecting intervals.

The essence of many real life problems is to minimize the amount of resources
used. Graph coloring is a natural way to express this minimization problem under
restrictions represented by the given graph: each color represents a resource, and if
two vertices share an edge then both cannot be assigned to the same resource. In the
general case finding the proper coloring is very hard even if we know that the graph
can be colored using 3 colors. On the other hand, the graph coloring problem restricted
to the class of interval graphs is easily solvable: the natural greedy algorithm applied
to the collection of intervals sorted by their endpoints gives an optimal coloring.

A graph coloring problem, besides its computational complexity, can be always
solved since for a given graph G on n vertices, we can simply check all possible color-
ings of G that uses colors from the set {1,...,n}. Some of these colorings uses mini-
mum number of colors, and so this is a solution. The graph coloring problem becomes
much more difficult if the whole graph is not known in advance, but each vertex is
presented one by one, and the coloring algorithm has to assign a color to the presented
vertex at the moment it is presented. Algorithm’s decision is irrevocable and has to
be made without any knowledge about the remaining part of the graph. This variant
of the graph coloring problem is called the online graph coloring, and in a natural way
models a dynamic system in which jobs have to be assigned to resources on the rolling
base without any knowledge about the future jobs.

The standard performance measure, used to analyze online algorithms, is the com-
petitive ratio, i.e. the worst-case guarantee on the ratio of the cost of solution given by
an online algorithm to the cost of optimal offline solution (see Preliminaries for a for-
mal definition). In general case of the online graph coloring there is no algorithm with
competitive ratio bounded by a constant [16, 17]. For the class of interval graphs there

3



4 CONTENTS

is a 3-competitive algorithm, and we know it is an optimal algorithm [26].

A model in which resources cannot be shared between jobs is quite narrow and
does not cover many real life scenarios. For instance, computer’s memory is a type
of resource that can be easily shared between many jobs. To analyze those types of
scenarios, a new model of conflicts was introduced. In this new model jobs declare
what fraction of a given resource they require, while resources can be shared between
many jobs unless for some resource the sum of requirements at some moment exceed
the capacity of that resource. The model we talk about is called the online graph coloring
with bandwidths (or sometimes with weights) and generalizes a well-known and widely
studied problem called the online bin-packing, see [8, 9, 10] for surveys.

Jobs with very short or very long execution time (for instance longer than the age
of the universe) are not real life jobs. Hence, it is reasonable to assume that all job-
describing intervals have lengths from a fixed and relatively short range. Moreover,
many memory resources are quantified in a natural way and operating systems often
limit the maximum amount of memory a single job can get. Thus, it is justified to
consider a model in which all jobs are allowed to request at least a-fraction and at
most S-fraction of the given resource.

Sometimes the easiest solutions are the best or at least good enough in comparison
with the optimal ones. One of the most natural greedy algorithms, called FirstFit, is an
example of such simple and easy to implement idea that in some cases gives very satis-
tying results. It is quite easy to prove that in the graph coloring problem, without any
restrictions on graphs, FirstFit does not achieve any constant competitive ratio, even if
the underlying graphs are forests. Since in the case of interval graphs FirstFit has com-
petitive ratio between 5 [25] and 8 [31], there is a hope that this natural algorithm might
achieve a constant competitive ratio also when applied to the interval coloring prob-
lem under reasonable restrictions on the lengths of intervals and requested fractions of
resources.

The presentation of our results concerning these variants of the online coloring of
interval graphs is organized as follows.

The main result of Chapter 1 is a new lower bound of 4.1626 on the competitive ratio
in the online interval coloring with bandwidths which improves the best previously
known lower bound of % ~ 3.428. We also give a new lower bound of 2 in the case
where all intervals have the same length improving previous bound of 1.861.

There are many different ways in which interval graphs can be presented online.
Obviously, they can be presented simply as graphs, i.e. vertices and adjacent edges.
However, vertices might be also presented together with their interval representation
on the real line. This kind of presentation can be even more striking when there are
some additional requirements those intervals have to satisfy. In Chapter 2 we investi-
gate how the competitive ratio depends on the graph representation. In particular, we
consider three variants of the online unit interval graph coloring with bandwidths. In
the first variant, only the mere graph is known, while in the other two of them some
interval representation is provided. Since it is well known that "unit = proper’ [6, 35],
we consider the input in the last two variants to be either proper interval representa-
tion or unit interval representation. For each studied variant we provide both lower
and upper bounds on the competitive ratio.

Chapter 3 is devoted to the analysis of the competitive ratio in the online interval



CONTENTS 5

coloring problem in which all intervals are restricted to have lengths from some fixed
range. We show that if all intervals have lengths from [1, 0], then there is a (1 + 0)-
competitive algorithm. Moreover, we prove that for every ¢ > 0 and sufficiently large
o there is no (5/2 — €)-competitive algorithm.

In Chapter 4 we provide the detailed analysis of the FirstFit algorithm. In that chap-
ter we analyze the competitive ratio of this algorithm in different variants of the online
interval coloring with bandwidths. In particular, we show that if lengths of intervals
are restricted to be in [1, o] and bandwidths are from [«, ], then the competitive ratio
of the FirstFit algorithm is a function of 5,1/ and 1/(1 — 3).

The ability to quickly verify hypotheses is one of the key elements of conducting
scientific research. Graph enumeration algorithms are helpful when we want to test
our hypothesis on a quite big set of graphs, and possibly find a small counterexam-
ple. In Chapter 5 we present an algorithm that enumerates (and constructs) all non-
isomorphic interval graphs on n vertices with worst-case time delay between the out-
put of two consecutive graphs of O(n”logn). Our algorithm beats the best previously
known algorithm with worst-case time delay O(n*).






Preliminaries

For definitions of standard graph-theoretical concepts, we refer the reader to [11]. We
also use certain specific notions and notational conventions listed below.

Set notation. For every positive integer k, the set {1, ..., k} is denoted by [k].

Graphs. We consider only simple undirected graphs without loops and multiple
edges. We use the notation G = (V(G), E(G)) (or G = (V, E) in short), where V(G)
is the finite vertex set, and E(G) is the edge set of a graph G. Moreover, if G is known
from context, we denote the number of vertices |V (G)| by n, and the number of edges
|E(G)| by m.

Interval graphs. A graph G = (V, E) with vertex set V' = [n] is an interval graph
if there is a set of closed intervals Z = {I;, ..., I,} on the real line such that (i,j) € E
iff ; N I; # 0. The set T is called an interval representation of G. We denote ; the left
endpoint of the interval I; and r; the right endpoint of I;, so I; = [l;,r;]. Moreover, we
denote the length of I; as length(I;) = r; — ;.

Proper interval graphs. An interval graph is a proper interval graph if it has an
interval representation Z = {I;,...,I,} such thatV,; : I, C I; = I, = I;. Such an
interval representation is called a proper interval representation of G.

Unit interval graphs. An interval graph is a unit interval graph if it has an interval
representation Z = {/[y, ..., [,} such thatV, : r, —[; = 1. Such an interval representation
is called a unit interval representation of G.

Online graph coloring. An online graph coloring is a two-person game, played in
rounds by Presenter and Algorithm. In this game Presenter shows the input graph to
the Algorithm vertex by vertex, along with all the edges adjacent to the already pre-
sented vertices. Algorithm must assign a color to each vertex, different than any of
its neighbors, immediately and irrevocably at the moment it is presented, without any
knowledge of the remaining part of the graph. The goal of Algorithm is to minimize
the number of different colors used during the game, while the goal of Presenter is to
maximize it.

Online (unit) interval graph coloring. This is a variant of the online graph coloring
problem in which the presented graph is an (unit) interval graph.

Online graph coloring with bandwidths. An online graph coloring with bandwidths
is a variant of the online graph coloring in which every presented vertex has an asso-
ciated bandwidth, which is a real number from [0, 1]. In this problem, two adjacent
vertices can be colored with the same color, but we require that for every color v and
every induced subclique @ of the presented graph, the sum of bandwidths of all ver-

7



8 CONTENTS

tices that belong to () and are colored with + is not greater than 1.

Online interval coloring. An online interval coloring is a two-person game, played
in rounds by Presenter and Algorithm. In each round Presenter introduces a new closed
interval on the real line, and Algorithm assigns a color to the incoming interval in such
a way that every two intersecting intervals get different colors. The color of the new
interval is assigned before Presenter introduces the next interval and the assignment is
irrevocable. The goal of Algorithm is to minimize the number of different colors used
during the game, while the goal of Presenter is to maximize it.

Online interval coloring with bandwidths. In this version of the online interval
coloring problem Presenter assigns a bandwidth to each presented interval, which is
a real number from [0,1]. A coloring is feasible if for each color v and any point p
on the real line, the sum of bandwidths of intervals containing p and colored v does
not exceed 1. Note that, an online interval coloring with bandwidths is a simultaneous
generalization of two problems - online interval coloring and online bin packing.

Online unit/proper interval coloring with bandwidths. Those problems are vari-
ants of the online interval coloring with bandwidths in which the presented represen-
tation is unit/proper interval representation.

Online o-interval coloring with |«, §]-bandwidths. This problem is a variant of the
online interval coloring with bandwidths in which all intervals have lengths between
1 and o, and all bandwidths are between « and £.

Absolute competitive ratio. In the context of various online coloring games, the
measure of quality of a strategy for Algorithm is given by the competitive analysis. A
coloring strategy for Algorithm is p-competitive if it uses at most g - ¢ colors for any c-
colorable input. The absolute competitive ratio for a problem is the infimum of all values
o such that there exists an p-competitive strategy for Algorithm for this problem.

Asymptotic competitive ratio. Let x4(Z) be the number of colors used by Algo-
rithm A on the input Z, and OPT(Z) be the minimum number of colors required to
color Z. The asymptotic competitive ratio for Algorithm A, denoted by RY, is defined as
follows:

RY = ngglf{XAT‘I) : OPT(Z) = k}

The asymptotic competitive ratio for a problem is the infimum of all values R’ such that
A is an Algorithm for this problem. Some authors define asymptotic competitive ratio
to be the limit in the size of instance instead of the optimum value. For the problems
discussed in this thesis, the competitive ratio defined as the limit in the size of instance
equals the absolute competitive ratio (we can add many independent vertices to a "bad’
small instance to make it a ‘bad’ big instance). Thus, we choose to define the asymptotic
competitive ratio as the limit in the optimal value.



1
Online Interval Coloring
with Bandwidths

1.1 Introduction

In this chapter we give lower bounds on competitive ratios for the online interval col-
oring with bandwidths and for the unit version of this problem. We obtain these results
by presenting explicit strategies for Presenter that force Algorithm to use many colors
while the presented set of intervals is colorable with a smaller number of colors.

1.1.1 Previous work

The competitive ratio for the online interval coloring was established by Kierstead and
Trotter [26]. They constructed a strategy for Algorithm that uses at most 3w—2 colors on
w-colorable set of intervals. They also presented a matching lower bound — a strategy
for Presenter that forces Algorithm to use at least 3w — 2 colors. The unit variant of the
online interval coloring was studied by Epstein and Levy [12]. Authors presented a
strategy for Presenter that forces Algorithm to use at least | % | colors. Moreover, they
showed that a natural greedy algorithm uses at most 2w — 1 colors.

A variant of the online interval coloring with bandwidths in which all intervals
have the same endpoints is known as the online bin packing, see [10] for a survey.

Online interval coloring with bandwidths was first posed in 2004. Adamy and Er-
lebach [2] showed a 195-competitive algorithm for this problem. An improved analysis
by Pemmaraju et al. [34] showed that Adamy-Erlebach algorithm has competitive ratio
at most 35. Narayanaswamy [32] and Azar et al. [4] presented a 10-competitive algo-
rithm. On the other hand, Epstein and Levy [12] showed a lower bound of 3.2609 for

the asymptotic competitive ratio in this problem, and then in [13] they improved it to
2
=

Online unit interval coloring with bandwidths was studied by Epstein and Levy

[12]. They presented a lower bound of 2 and upper bound of I for the absolute com-
petitive ratio in this problem. For the asymptotic competitive ratio, they showed a
3.178-competitive algorithm and a lower bound of 1.831.

1.1.2 Ouwur result

For the online interval coloring with bandwidths, we prove that the asymptotic com-
petitive ratio is at least 4.1626 improving previous best lower bound % of [13]. For the

9



10 Online Interval Coloring with Bandwidths

online unit interval coloring with bandwidths, we improve the bound 1.831 by pre-
senting an explicit strategy for Presenter that forces Algorithm to use at least 2k — 1
different colors while the presented set of intervals is k-colorable.

1.2 Presenter strategy

At first we recall a strategy proposed by Kierstead and Trotter for Presenter in the on-
line interval coloring game. We use this strategy as a substrategy in our lower bound.

Theorem 1.1 (Kierstead, Trotter [26]). For every w € N, there is a strategy for Presenter
that forces Algorithm to use at least 3w — 2 different colors in the online interval coloring game
played on a w-colorable set of intervals. Moreover, Presenter can play in such a way that every
introduced interval is contained in a fixed interval [L, R).

Below we present a strategy for Presenter in the online interval coloring with band-
widths. We fix some k£ € N, and will ensure that at any point of the game, the set
of intervals introduced by Presenter is k-colorable. To construct our strategy we need
several parameters that are going to control the construction.

Definition 1.2. A pair of sequences ([j1, - .., jn), [T1, ..., 2s]) such that x; € Ny, j;|k and
J1 < Jjo < ...<jn < skis called a k-schema.

The j;’s are going to control the bandwidths of the intervals presented in the i-th
phase, while the z;’s are supposed to describe how many new colors the Algorithm is
forced to use in this i-th phase. However, not every k-schema leads to a strategy for
Presenter. Later we give additional conditions that a given k-schema has to satisfy to
produce a valid strategy.

1.2.1 Strategy description

The strategy for Presenter is based on a k-schema ([j1, .. ., jn|, [21, . .., 2,]) and consists
of 2 main phases: the separation phase and the final phase. The separation phase consists
of n subphases indexed by 1, ..., n. Let M be the set of marked intervals, which initially
is empty, and M, be the subset of M containing all marked intervals from the i-th
subphase. For each color ¢ used by Algorithm in the separation phase, the set M
contains the first interval colored by Algorithm with c.

All intervals introduced by Presenter in the i-th subphase are contained in the same
region [L;, R;], have length s; = %(R, — L;), and bandwidth %, see Figure 1.1. At each
moment in the i-th subphase we keep two values p? and p¥. The pF keeps the rightmost
right endpoint of non-marked intervals already introduced in the i-th subphase, or
pF = L, + s; if such an interval does not exist. Analogously, pf* keeps the leftmost right
endpoint of marked intervals already introduced in the i-th subphase, or p? = R; if
such an interval does not exist. For the first subphase we set L; = 0, R; = 2 and for the
i-th subphase we set L, = pZ |, and R; = p* | where p/ | and p# | are values of those
variables at the end of the (i — 1)-subphase.

In the i-th subphase, Presenter introduces new intervals until exactly ; new colors
are introduced by Algorithm. Let p; = 3(p + pf’). A new interval introduced by



1.2. Presenter strategy 11

Presenter has endpoints I = [p; — s;, p;]. If Algorithm colors I with one of the already
used colors, then p¥ changes to p;. Otherwise, pf changes to p; and interval I is marked.

Assume that Presenter secretly constructs for himself some optimal coloring after
each subphase. Let I'; be the number of colors used by Presenter in that coloring on
intervals in the set M; U...UM,, see Figure 1.2. A precise procedure to determine the
I';’s is to be given later (after Definition 1.3). Our first restriction on the £-schema we
actually use to build our strategy is the requirement that I',, < k.

In the final phase, Presenter uses the strategy from Theorem 1.1 in the interval
[Lyp+1, Rot1] simply with w set to & — I';,. Note that the bandwidth of each interval
introduced by Presenter in the final phase is simply 1. This completes the description
of a strategy for Presenter based on a k-schema.

Figure 1.1: Intervals introduced in the i-th subphase in relation to the intervals introduced in the (¢ — 1)-
th subphase. Marked intervals are marked with *.

L, Ly L

.....................................

P
P i k

..............

Figure 1.2: The distribution of intervals in the first i — 1 separation subphases. The L-shape P; represents
the separation process of the intervals introduced in the j-th subphase, while its bottom part labeled M
represents intervals marked in this phase.

1.2.2 Strategy analysis

Now, we show when a given k-schema ([j1, . . ., jn), [21, - - ., 2,]) actually leads to a valid
strategy for Presenter, i.e. when Presenter is able to force Algorithm to use at least x;
new colors in the i-th subphase.



12 Online Interval Coloring with Bandwidths

During the i-th subphase, we have L; + s; < p; < R;. Thus, the distance between
the rightmost right endpoint of an interval introduced in the i-th subphase and the
leftmost right endpoint of interval introduced in this phase is at most s;. Hence, all
intervals introduced by Presenter in the i-th subphase form a clique, see Figure 1.1.

Note that to the right of p” ;| there are only marked intervals from the first i — 1
subphases. Each interval introduced in the i-th subphase intersects with every interval
previously introduced in the i-th subphase and all marked intervals from the first i —
1 subphases. Thus, if Presenter introduces at most £(k —I';_;) intervals in the i-th
subphase, then all intervals can be colored with & colors.

Let x; := |[My| + ... + | M;| be the number of marked intervals after the i-th sub-
phase, and put x, = Fo = 0 for convenience. Intervals introduced in the i-th subphase
intersect with exactly y;_; marked intervals from subphases 1, . .., i—1 and by the defi-
nition of the set M each of them has a different color. Thus, in the interval [L;, R;], each
color marked in a subphase 1 < ¢ < i has accumulated bandwidth #. We assumed
that j, < j;, hence at most £ — 1 intervals can be colored with each part1cular color
that was used in the previous subphases Thus, in the i-th subphase Algorithm may be
forced to use at least

A= H? (f (k | 1) Xi—1 (JE - 1))—‘ =k—-Ti1—xi-1+ ’V%le—‘ (1.1)

new colors.

Definition 1.3. A k-schema ([j1, ..., jnl, [21,...,%y,)) is a k-strategy if I',, < kand z; < A,
for all i.

Now we will see that the presented intervals may be colored by k colors and pro-
vide a coloring procedure that uniquely determines the I';’s. To this end after the i-th
subphase we assign offline colors to the intervals introduced in the i-th subphase as
follows. First we use greedy algorithm to color the intervals from M, and then to the
non-marked intervals from i-th subphase using at most k colors in total. Note that
some intervals might be colored with some of the already used I';_; colors. Because
the number of new marked intervals in the i-th subphase is exactly z;, each of them
has bandwidth £, and those intervals are colored using greedy algorithm, then T is
a properly defined quantity for a given k-schema and depends on all the j,’s and z,’s
with ¢ < 7, but does not depend on the Algorithm’s coloring.

This shows that Presenter using a k-strategy ([ji, ..., Jnl, [*1,-..,2,]) forces Algo-
rithm to use at least ¥j_, 7, colors in the separation phase and 3(k — I',,) — 2 new colors
in the final phase, while the set of introduced intervals is k-colorable.

We just completed the analysis of our strategy for a given k-strategy. Now we
present a very simple example that already improves the known lower bound % to 4.

Example 1.4. For a fixed k € N, and a very simple k-strategy ([1], [k]) we have Iy = 1.
Presenter using this strategy forces Algorithm to use at least k 4+ 3(k — 1) — 2 = 4k — 5 colors,
while the set of introduced intervals is k-colorable. Thus, the asymptotic competitive ratio in
the online interval coloring with bandwidths is at least 4.



1.2. Presenter strategy 13

With a little bit more effort we rise the lower bound to 4.1.

Example 1.5. Consider the 120-strategy given by the values j;, x; and I'; from the Table 1.1.
Presenter using this strategy forces Algorithm to use 152 + 3(120 — 6) — 2 = 492 colors, while
the set of introduced intervals is 120-colorable. Thus, the absolute competitive ratio for the
online interval coloring with bandwidths is at least 4.

Ji | 1 21314 (5|6 |8|10]12]15[20|24| 30
x; | 120 1 212121415418
| 1 212121212222 |3|4|4]6

—_
—_
—_
—_

Table 1.1: Example of a strategy S120.

To produce the strategy from Example 1.5 we choose k to be 120 and as j;'s we
consider all its divisors that are smaller than %k = 40. Starting from I'y = xo = 0, for
each i we greedily choose the maximum value of z; that satisfy z; < A; and compute
the corresponding value of I';.

1.2.3 Scalable strategies

Example 1.5 is an example of a k-strategy for Presenter for a fixed k, and gives a lower
bound for the absolute competitive ratio. In order to give lower bounds for the asymp-
totic competitive ratio, we introduce a notion of a scalable strategy.

Definition 1.6. For a given k-schema Sy, = ([j1,- .-, Jn)s [T1, ..., Ty)) and a € Ny, an
ak-schema S¢ = ([ajy, ..., ajnl, (a1, ..., ax,)) is called an a-scaled Sy schema.

Note that an a-scaled k-strategy might not be an ak-strategy. For example S is
a 120-strategy but S5, is not a 360-strategy. To see this, observe that in S3,, we have
12 =219 > AlO = 11.

To make our further analysis of a-scaled strategies simpler, we assume that a is
a multiple of k, so let = € N, and assume that a = zk. We still need an additional
constraint on a k-strategy Sy that will ensure that S7* is a zk?-strategy. This constraint
is another bound on the z;’s and comes from the very same analysis as it was done
just before Definition 1.3, but applied to the zk-scaled k-strategy. Working with the
multiples of k we are simply allowed to omit the ceiling in (1.1). Indeed in this new
setting I'; = 2%} _, j,z, and x; = zk¥!_, z,, so that we get another bound on the number

of colors used by Algorithm
A} = z2(K* 4+ S (i — Jg — k)zg). (1.2)
The zk-scaled k-strategy is a zk?-strategy if zkx; < A; for all i. Thus, we have a
condition

1 .
Vi:az; <k+ EE;;ll(ji — Jg — k)z, (1.3)



14 Online Interval Coloring with Bandwidths

Definition 1.7. A k-strategy Sy, that additionally satisfies (1.3) is called a scalable strategy.
Note that (1.3) does not depend on z, and so we have the following lemma.

Lemma 1.8. If a k-strategy Sy, satisfies (1.3), then for every z € N a zk-scaled Sy, schema is
a zk*-strategy.

We just showed that having a scalable strategy S), we can produce a family of strate-
gies S = {5, SF, S7*,...}. Now we show that all those new strategies are at least as
good as Sj in terms of the competitive ratio. Combining the Lemma 1.9 with the fact
that these strategies build increasingly bigger instances, we get a lower bound on the
asymptotic competitive ratio. Note that each particular strategy certifies an absolute
lower bound, but the whole sequence certifies the asymptotic lower bound.

Lemma 1.9. For every k, z € N and a scalable k-strateqy Sy, the competitive ratio guaranteed
by the Si* strategy is greater than the competitive ratio guaranteed by the Sy strategy.

Proof. Let Sy = ([j1,---,Jnl, [%1,...,2,]). Presenter using a strategy S}, forces Algorithm
to use X = X'z, + 3(k—1T,) — 2 colors, while the set of intervals introduced by
Presenter is k-colorable. Presenter using a strategy Si* forces Algorithm to use X =
¥ zkx; + 3(zk* —T,,) — 2 colors, while the set of intervals introduced by Presenter
is zk?-colorable. Observe that the number of colors required in greedy coloring of all
intervals marked by S7* strategy is at most zk times bigger than the number of colors
required in greedy coloring of all intervals marked by S, strategy, i.e. [, < zkl,,. Thus,
wehave X > 1 X + 2 — 2 > 1 X, O

Knowing the additional constraint (1.3) that the Si, strategy presented in Exam-
ple 1.5 should satisfy to be a scalable strategy, we modify it and produce a scalable
strategy 5120 in the same manner as we do in Example 1.5, but now we choose z; to be
the maximum integer that satisfy both requirements.

Example 1.10. Consider the scalable 120-strategy given by the values j;, x; and I'; from the

Table 1.2. This strategy implies a lower bound of 455 + 155 = 445 for the asymptotic competitive

ratio in the online interval coloring with bandwidths.

Ji | 1 21314516 |8]10]12(15[20|24]| 30
x; | 120 21212 13]64]8
1121222122223 |4]4]6

—_
—_
—_
—_
—_

Table 1.2: Example of a scalable strategy S120

1.2.4 Experimental results

In order to obtain our best lower bound for the asymptotic competitive ratio we choose
k to be a highly composed number. As a sequence ji, ..., j, we choose consecutive divi-
sors of k£ and as previously for a sequence z, . .., z, we greedily choose the maximum
numbers z; satisfying both z; < A; and (1.3).

Table 1.3 contains the list of lower bounds for the asymptotic competitive ratio we
got for some values of k£ using this method. These data allows us to state the following
theorem.



1.3. Unit Intervals 15

Theorem 1.11. Asymptotic competitive ratio for the online interval coloring with bandwidths
is at least 4.1626.

k ratio k ratio

60 4.0500000 || 2162160 4.1624500
120 4.1166667 || 21621600 4.1624777
360 4.1416667 || 183783600 4.1625239
840 4.1523809 || 2327925600 4.1625617
2520 4.1587301 || 48886437600 4.1625717
7560 4.1607142 || 321253732800 4.1625883
10080 | 4.1611111 || 4497552259200 4.1625893
15120 | 4.1614417 || 97821761637600 4.1625961
25200 | 4.1615873 || 866421317361600 4.1626008
27720 | 4.1618326 || 4043299481020800 4.1626015
110880 | 4.1621753 || 12129898443062400 | 4.1626018
554400 | 4.1622763 || 224403121196654400 | 4.1626043

Table 1.3: A table of asymptotic competitive ratios for different values of &

1.3 Unit Intervals

Now we modify strategy from Section 1.2 to the unit intervals realm. In this case we
are restricted to only one subphase of the separation phase and instead of calling (in
the final phase) the construction of Kierstead an Trotter (see Theorem 1.1) we simply
present a clique.

Theorem 1.12. For every k € N., there is a strategy for Presenter that forces Algorithm to
use at least 2k — 1 different colors in the online unit interval coloring with bandwidths played
on a k-colorable set of intervals.

Proof. For a given k € N, Presenter at first plays only the separation phase of a k-
strategy ([1], [k]). Because L; = 0, R = 2 and s; = 3(R; — L), every introduced
interval has length 1. Moreover, there is a point p; = 1 (pf 4+ p{f) such that every marked
interval has its right endpoint to the right of p; and every non-marked interval has its
right endpoint to the left of p;.

Now, Presenter introduces & — 1 intervals [p;, p1 + 1] of bandwidth 1 each. Every
interval introduced in this phase gets a new color. Thus, Algorithm uses |[M|+k—1 =
2k — 1 colors in total, while the introduced set of intervals is k-colorable. O

Applying Theorem 1.12 we improve the previous lower bound 1.831 to 2. However,
in Chapter 2, with a different technique, we rise this bound to 2.1571.

Corollary 1.13. Asymptotic competitive ratio for the online unit interval coloring with band-
widths is at least 2.






2
Different Interval Graph Representations
in Online Unit Interval Coloring

2.1 Introduction

In this chapter we investigate how the competitive ratio in the online graph coloring
problem for unit interval graphs depends on the graph representation. We consider
three online coloring problems regarding the way the graphs are presented: online
unit interval graph coloring with bandwidths, online proper interval coloring with
bandwidths, and online unit interval coloring with bandwidths.

2.1.1 Previous work

For the classic versions of those problems (without bandwidths) a natural greedy algo-
rithm called FirstFit is 2-competitive [12]. Since FirstFit does not care about the repre-
sentation, this implies an upper bound on the competitive ratio in all three problems.
On the lower bound side, it is quite easy to prove that for any € > 0 there is no (2 — ¢)-
competitive algorithm for the online unit interval graph coloring. To see this, just take
N =[] + 1 and consider a graph which consists of (*) + 1 disjoint cliques each of
size N. Clearly, this graph is N-colorable, so if Algorithm uses more than 2NV different
colors, then the competitive ratio is more than 2. Hence, it uses at most 2V different
colors and from pigeon hole principle there are two cliques colored by Algorithm with
the same set of colors. Without loss of generality, we assume that those colors are [V]
and present additional N — 1 vertices as in the Figure 2.1. Thus, the resulting graph is
still N-colorable, and Algorithm was forced to use 2N — 1 different colors. The com-
petitive ratio in this case is atleast 2 — - > 2 —e.

4}5 { | { }
31 |} { }

I ] | ] | ]
1T 1T

= I} ] 12"

Figure 2.1: The strategy for Presenter in the online unit interval graph coloring.

For the unit representation Epstein and Levy in [12] stated a lower bound 2 which is
unbeaten till today. Hence, in case of problems without bandwidths, we know every-
thing about the game played on a mere graph, but there is still quite big gap between
2 and 2 for games played on unit or proper interval graph representations.

17



18 Different Interval Graph Representations

Epstein and Levy [12] also presented an Algorithm for the online unit interval col-
oring with bandwidths which is 3.178-competitive. In the same paper they provided
a lower bound of 1.831, but we have already improved it to 2 in Chapter 1. They also
proved that a natural greedy algorithm is 8-competitive and presented a variation of
FirstFit that is 6-competitive.

Input Lower Bound Upper Bound

Graph Representation 2 Theorem 1.12 | 6 Epstein & Levy [12]
Proper Interval Representation | 2 Theorem 1.12 | 6 Epstein & Levy [12]
Unit Interval Representation 2 Theorem 1.12 | 3.178 Epstein & Levy [12]

Table 2.1: Best previously known bounds on the asymptotic competitive ratio in online unit interval
coloring with bandwidths.

2.1.2 Our results

We prove that FirstFit achieves an asymptotic competitive ratio of 5 improving the
analysis of Epstein and Levy. As it was mentioned before, FirstFit does not care about
the representation, so this result improves the best known upper bounds for games
played on both: a mere graph and a proper interval representation.

In order to prove our lower bounds, we combined some well known strategies for
the bin packing problem with our new constructions for interval graphs. Essentially,
we present many instances of some bin packing lower bound strategy, and carefully
maintain endpoints of the presented intervals. If Algorithm does not use many colors
during the bin packing phase, then we use some additional construction that forces
Algorithm to use many new colors, while the minimum number of colors required to
properly color the presented instance does not change. Table 2.2 is a summary of our
results, and represents the state of the art in this matter.

Input Lower Bound Upper Bound

Graph Representation 2558 Theorem 2.13 | 5 Theorem 4.18
Proper Interval Representation | 25 Theorem 2.14 | 5 Theorem 4.18
Unit Interval Representation 2.1571 Theorem 2.23 | 3.178 Epstein & Levy [12]

Table 2.2: Best known bounds on the asymptotic competitive ratio in online unit interval coloring with
bandwidths.

2.2 Upper Bounds

As we mentioned before, the best known upper bound for the online unit interval
coloring with bandwidths is by Epstein and Levy and was presented in [12]. The fol-
lowing theorem recalls that result.

Theorem 2.1 (Epstein, Levy [12]). There is a 3.178-competitive algorithm for the online unit
interval coloring with bandwidths.



2.3. Lower Bounds 19

Chapter 4 of this thesis is devoted to the detailed analysis of the FirstFit algorithm
in various variants of the online interval coloring with bandwidths. Thus, the proof of
the following theorem is deferred to the Chapter 4.

Theorem (Reminder of Theorem 4.18). The maximum color used by the FirstFit algorithm
in the online unit interval coloring with bandwidths is bounded from above by 5 x OPT + 2.

2.3 Lower Bounds

Before we present our lower bounds, we present the strategy of Epstein and Levy for
the online unit interval coloring. We call this strategy an EL-strategy, and use it as a
subprocedure in various constructions in this chapter and also in Chapter 3.

Theorem 2.2 (Epstein and Levy [12]). For every positive integer k there is a strategy for
Presenter in online unit interval coloring that forces Algorithm to use at least |3k| colors
while the presented set of intervals is k-colorable.

. EL-separation phase | 3 EL-final phase 1
. height: [1k] | height: [1k] 1
] I A 1
. EL-separation phase 3 3 EL-initial phase bl I
" height: | 1| "1 height: [11] | L2#]

Figure 2.2: Strategy construction in Theorem 2.2.

Proof. The strategy for Presenter consists of three phases, see Figure 2.2. In the first
1

phase, called the EL-initial phase, Presenter introduces |1k | copies of interval [0, 1]. Al-
gorithm needs to assign a different color to each copy. Let X be the set of |1k| colors
used by Algorithm in this phase.

The second phase, is called the EL-separation phase. In this phase, Presenter plays
the following separation strategy for k rounds. Let /; = —1 and r; = 0. In the i-th
round of the EL-separation phase Presenter introduces the interval [4£7% — 1, b2ni] If
Algorithm colors the interval with one of the colors in X, let [, ; = l% and r; 1 =1y,
which means that the next interval will be shifted slightly to the right. Otherwise, let
lisqi =1l and r;y; = l%, which means that the next interval will be shifted slightly to
the left. Observe that all intervals introduced in the EL-separation phase have length 1
and form a clique of size k. Furthermore, the choice of /;'s and r;’s guarantees that for
any two intervals z, y introduced in the EL-separation phase, x colored with a color in
&, and y colored with a color not in X', we have that the left endpoint of x is to the left

of the left endpoint of y. Let Y be the set of | 1k| right-most intervals introduced in the



20 Different Interval Graph Representations

EL-separation phase, and let ) be the set of colors used by Algorithm on the intervals
in Y. Note that sets X and ) are disjoint.

For the last phase, called the EL-final phase, let r be the left-most right endpoint of an
interval in Y. In the final phase Presenter introduces [1k| copies of interval [r,r + 1].
This interval intersects all intervals introduced in the EL-initial phase, all intervals in
Y, and no other interval introduced in the EL-separation phase. Algorithm must use
[3k] colors in the EL-final phase that are different from the colors in both X and V.
Let Z denote the set of colors used by Algorithm in the EL-final phase. The presented
set of intervals is clearly k-colorable and Algorithm used at least |X| + |V| + |Z| =
2|1k] + [4k| = | 2k] colors. O

2 2

Note that the presented strategy introduces only intervals of length 1, but we can
rescale this strategy to intervals with the other length.

2.3.1 Graph Representation

First we consider the game in which Presenter does not provide any interval graph rep-
resentation but a mere graph. We require that at any point of the game, the presented
graph is a unit interval graph — it has some unit interval graph representation.

Here we describe a strategy for Presenter in the online unit interval graph coloring.
Let N be some positive integer divisible by 12, and € € (0, 5;). Define w; = &5 + ¢,
wy = 3 +¢€ wy =35 +¢and Ny = N, = N, N3 = 2N. Our strategy for Presenter
works in at most 3 phases and each phase consists of at most 2 subphases. Actually
the second subphase is performed at most once, in fact in the last executed phase.
During the first subphases of the game Presenter maintains only a collection of D :=
(4N +1)°" 41 disjoint cliques that are initially empty. In the first subphase of the i-th
phase Presenter enlarges each of those cliques by N; vertices, each of them of the same
bandwidth w;. If Algorithm uses more than 3N colors in total, then Presenter stops
the game. Otherwise, Presenter continues the game in the second subphase. In this
subphase Presenter considers an application of some special strategy called strategy
2+, see Lemma 2.5, but does not apply it immediately. Instead, Presenter computes
the guaranteed, by strategy %—i—, competitive ratio using Lemma 2.5 and if this ratio
is high enough, then applies the aforementioned strategy and finishes the game just
after it has been executed. If the guaranteed ratio is too small, then Presenter skips this
subphase and continues the game in the (i 4+ 1)-th phase. We ensure, that if after the
tirst subphase of the third phase Algorithm has still used less than 3N + 1 colors in
total, then the competitive ratio guaranteed by strategy 3+ is big enough, so the game
eventually terminates after at most 3 phases. That finishes the high-level description
of our strategy.

Now we take a look at the details and prove that the strategy guarantees that Al-
gorithm uses at least 2522 times more colors than one needs to properly color the pre-
sented instance. First, we prove that if Algorithm uses more than 3N colors, then
competitive ratio is greater than 3. In this case Presenter stops the game just after some
tirst subphase and the presented graph is just a collection of disjoint cliques. Since
wy + wy + 2wz = %g + 4e < 1, we can color all vertices of the presented graph with N
colors. Thus, Algorithm uses at least 3 times more colors than one needs to color the

presented graph, and we are done in this case. To analyze all possible games between



2.3. Lower Bounds 21

Presenter and Algorithm in which Algorithm uses at most 3V colors, we introduce
some auxiliary objects. The first definition describes the characteristics of a single col-
ored clique.

Definition 2.3. For a clique () of vertices with bandwidths let 1q(c, b) be the number of ver-
tices in () that have bandwidth b and are colored with a color c. We say that function )¢ is a
characteristic vector of Q).

If Q) is known from the context, we simply write ¢ instead of 1. Now, we make a
simple observation on characteristic vectors.

Observation 2.4. If Algorithm uses at most 3N different colors in total, then there are at most
(4N + 1)V different characteristic vectors among all presented cliques.

Proof. We assume that all colors used by Algorithm are from the set [3N]. Each clique
contains at most N; + Ny + N3 = 4N vertices, and each vertex has associated one of
three possible bandwidths. Thus, there is no more than (4N + 1)**" functions of the
form f : [3N] x [3] = {0,...,4N}. O

A consequence of the above observation is the fact that if Algorithm uses at most
3N different colors, then there are at least two different cliques having the same char-
acteristic vector. Note that a collection of characteristic vectors for all presented cliques
uniquely encodes the game between Presenter and Algorithm when restricted to our
D cliques (up to relabeling vertices that have the same bandwidth and were colored
with the same color). Thus, by considering all possible collections of D characteristic
vectors we analyze all possible games in which Algorithm uses at most 3N different
colors. In fact, we do not even need to analyze all possible collections of characteristic
vectors but only one of them. This is because the characteristic vectors are used only
in second subphases, fully analyzed in Lemma 2.5, and such subphase introduces new
vertices that connect two particular cliques with the same characteristic vector. Thus,
only one such characteristic vector is in fact used. In fact Lemma 2.5 analyzes how
many new colors can be enforced in a second subphase depending on this particular
characteristic vector common for two different cliques. For this analysis, in each clique
we mark the first vertex in each color used in this clique by Algorithm.

Lemma 2.5 (The strategy 3+.). Let Q, and Qs be two cliques having the same characteristic
vector. Suppose that both cliques can be colored offline by H colors in such a way that exactly h
colors are used to color all marked vertices in each clique. Then there is a strategy for Presenter
to enlarge the graph Q)1 U Q)2 (to a new unit interval graph) which forces Algorithm to use at
least $H — 1h — 2 additional colors with the enlarged graph being still H-colorable.

Proof. We shall describe a strategy for Presenter that adds new vertices to the graph
consisting of @)1 and @),. In order to prove that the enlarged graph is a unit interval
graph, we provide its proper interval representation, see Figure 2.3. We also construct
an offline coloring of the enlarged graph with H colors and call it the Presenter’s col-
oring. To avoid confusion when talking about Algorithm’s coloring and Presenter’s
coloring, we refer to colors used by Algorithm as colors and colors used by Presenter
as hues.



22 Different Interval Graph Representations

Without loss of generality, let & be an H-coloring of ¢); U () such that all marked
vertices are colored in ® with colors from [A]. For i € [H] and j € [2] let C/ be the set
of vertices from the clique @); that are colored in ® with a color i. Since 1q, = ¥q,,
without loss of generality we may assume that vertices from the set C} are colored by
Algorithm with the same set of colors as vertices from the set C?. Additionally, note
that some not marked vertices may also be colored in ¢ with colors from [A].

Now, Presenter starts to enlarge (), U(Q- by adding new vertices, each of bandwidth
1. At first, Presenter introduces h — 1 new vertices [, ..., I,_; in such a way that the
neighborhood of I; at the moment it is presented is exactly N(I;) = (C3U...UC?) U
(CL,U...UCH) U{lL,...,I;_1}. Since the neighborhood of I; is already colored with
all previously used colors, the Algorithm has to assign a new color to each I,.

Finally, Presenter plays the EL-separation strategy for £ = H —h, see Theorem 2.2, in
such a way that all vertices from EL-initial and EL-final phase are additionally adjacent
to all vertices from the set {I,...,I;, 1} U (C?U...UC?) and all vertices from EL-
separation phase are additionally adjacent to all vertices from the set {I;,...,I;_1} U
(CtU...UC}). Thus, all colors used by Algorithm in this phase are different from the
previously used colors, and Algorithm was forced to use at least h — 1+ 2|3 (H — h)| +
[3(H—h)| =H+ |4(H—h)| —1>3H — $h — 2 new colors.

left clique Q1 right clique Q2

|
| | : |
| : EL-separation phase EL-final phase ! :
! | height: [%(H - h)] height: ]—%(H —h)] : |
: not marked : : not marked :
1| intervalsonly | V| intervals only |
e Y o) S I 1 C2,....0% |
\ h+1 H h+1 H
| | | |
\ | EL-separation phase EL-initial fhase : |
" : | height: \_%(H —h)| height: | 5 (H — h)| | | H
!
I ! I |
| ! |
: : e -- I :
! \ " Cc? Hl \
| == I L ‘
1 | | 2 !
1] G IS 7 4 %] I .
| 2 ik
I T 5 . g, o
h—1 |
A | I
I e EEEE e e e e - - -
1] ch |

Figure 2.3: Strategy construction for Lemma 2.5

We show that the resulting unit interval graph is /-colorable. The EL-separation strat-
egy is played for k = H — h, so clearly we can color all vertices presented during this
phase using hues from the set {h + 1,..., H}. Now, we color all vertices from sets Cj
and C7 with a hue h, and all vertices from sets C; UC?, | U{I,;} withahue i fori € [h — 1.
Finally, we color all vertices from the set C} U C? withahueifori e {h+1,...,H}. It
is easy to check that the presented coloring is a proper coloring, and we are done. [

We just presented the strategy 2+. Now we show when we can make use of it. First,
we define a collection of variables X, ; . based on a characteristic vector .



2.3. Lower Bounds 23

Definition 2.6. For a given colored clique of vertices with bandwidths let X, . be the number
of different colors v such that exactly a vertices with bandwidth w., b vertices with bandwidth
wy and c vertices with bandwidth w; are colored by . A configuration is a vector of numbers
Xap,c where (a,b, c) ranges over all triples satisfying aw; + bwy + cws < 1.

Note that configuration is a natural function of characteristic vector

Xa,b,c - ‘{7 : w(ﬁﬁwl) = aﬂﬁ(%“@) = baw(ﬁ)/7w3) = C}’

We define some auxiliary variables M; that denote the number of marked vertices
in each phase, ie. M; = Za>0’b’c Xape, My = Zb>0,c Xope,and Mz =3~ o Xo0,.. We call
vertices presented in the first phase light vertices, in the second phase medium vertices
and in the last phase heavy vertices. In the next three lemmas we analyze how many
additional colors Presenter can force on Algorithm in each of the three phases.

Lemma 2.7. The strategy 2+ is applicable in the first phase with H = LN and h = [LM;].

Proof. In the first phase Presenter shows light vertices only, so exactly 12 vertices can
be colored with one color. We color all marked vertices and 12 (%M J — M, not marked
ones with h = [LM;]| colors. To color the remaining not marked vertices we re-
quire additional |4 (N — 12[ M, |)| colors. Thus, we color the whole instance using

12
[ 5N — [HM]] + [55M1] = 15N colors since N is divisible by 12. O
Lemma 2.8. If My < My, then the strategy %+ is applicable in the second phase with H = %N
and h = [$M,].

Proof. Since & + € + 1 4+ ¢ = i 4 2¢ < 1, we can color 3 light vertices and 3 medium
vertices using the same color. We label light vertices v!,..., v} in such a way that
marked vertices come first. Analogously, we label medium vertices v, ..., vy. Now,
for every i € [$N] we color six vertices v}, _,, vh;_y, v}, v§i_y, v5_;, v with a color i.
Thus, we properly colored all vertices using 5V colors, and it is easy to see that every

marked vertex is colored with a color at most [1M/s]. O

Lemma 2.9. If My < M, and 2M, < Ms, then the strategy 3+ is applicable in the third phase
with H = N and h = [ M)
155

Proof. Since % +e+ }l + e+ % +2¢ = 15z +4e < 1, we can color 1 light vertex, 1 medium

vertex and 2 heavy vertices using the same color. As in the previous lemma, we la-

bel light vertices v!, ..., v, medium vertices v, ..., v}, and heavy ones v, ... vhy.

or every 1 we color four vertices vi, v, v _., ve with a color 7. Yet again, we
F €[N lor f t Lom oh | vh with 1 Yet

1) 71 )

properly colored all vertices using N colors, and every marked vertex is colored with
a color at most [1M;]. O

Corollary 2.10. If Presenter decides to play the strategy 3+ in the first phase, then Algorithm
uses at least 2= N + 23 My — 3 colors to color the resulting graph, while it can be properly colored
with at most -5 N colors.

Corollary 2.11. If M; < M, and Presenter decides to play the strategy 3+ in the second phase,
then Algorithm uses at least 3N + My + 2M, — 3 colors to color the resulting graph, while it
can be properly colored with at most 1N colors.



24 Different Interval Graph Representations

Corollary 2.12. If M, < M,, 2M> < M and Presenter decides to play the strategy 3+ in the
third phase, then Algorithm uses at least 3N + M, + M+ 2 Mz — 3 colors to color the resulting
graph, while it can be properly colored with at most N colors.

A consequence of the above corollaries is that Presenter using the strategy 3+ in

the first phase achieves a competitive ratio at least 2 + 2221 — 36 i the second phase
at least 2 + 321 4 322 2 ‘and in the last phase at least 3 + 21 4 22 4 345 3

Our analysis of competitive ratio achieved by all possible characteristic vectors v, that
can be used to apply the strategy 2+, is based on a linear program with branches, see
Figure 2.4.

min Cy
s.t. me’C,Ml,MQ,Mg eN
Z aXepe =N #vertices presented in 1st phase
abc
Z bXope =N #oertices presented in 2nd phase
abc
Z cXape=2N #oertices presented in 3rd phase
abc
Z Xape =M #new colors in 1st phase
a>0,b,c
Z Xope =M, #new colors in 2nd phase
b>0,c
Z Xo0.e = M; #new colors in 3rd phase
c>0
3 23 36
Z -+ M - —
Cnvzotonh—R§
C >3—|—3M+ 5M—9 applicable under M, < M.
N Z 5 N 1 ON 2 N pp 1 M2
3 1 1 3 .
Cy > 3 + NMI + NMQ + mMg N applicable under 2M; < M3

Figure 2.4: The linear program with branches encoding the problem of finding the minimal competitive
ratio in the described game for a given N.

To solve this linear program, we consider 3 independent linear programs:
e M, > M,, without the last two constraints,
o M, < My, 2My > M;, without the last constraint, and
o M, < My, 2M,y < Ms.

We do not solve the presented linear program directly, since it is almost an integer
linear program. Note that all variables except Cy are positive integers, while C'y can
be a real number. In fact one can easily transform this program into an integer linear



2.3. Lower Bounds 25

program. To do so it is enough to multiply both sides of the last three inequalities by
AN and introduce a new variable C* = 4NCy. The modified program then minimizes
C* and the sought competitive ratio is 7 C*.

Instead, we divide both sides of the equalities by IV, and introduce new variables
Tape = %Xa,b,c and ¢; = %MZ Moreover, we move constant factors from the right
hand side of inequalities to the left hand side and as a result we get a linear program
presented in Figure 2.5 (left).

Now consider an approximation to the modified program presented in Figure 2.5
(right) and observe that for every N we have Cy > ¢ — 3 where O} is the solution
of the modified program, and ¢ is the solution of the approximation. Thus, instead
of solving the original hard program, we can solve an easy approximation and get a
lower bound on the asymptotic competitive ratio.

Original program: Approximation:
min Cly min ¢
st. D e Tape =1 st D e Tape =1
Zabc bxa,b,c =1 %abc bxa,b,c =1
abe CLab,c = 2 abe CLab,c = 2
a>0,b,c Tabc = 1 Za>0,b,c La,b,e = q1
Zb>07c Zob,e = (42 Zb>0’c Zob,e = (42
250 Wy By, Zc>%x0,02,§ B
Cn+y25t+t5q b=Z5+ 30
Cn+ 5 = 3+3q+ 2¢ L g1 < o ¢=343q + 2 g1 < qo
Cv+223+qa+@+3p |12¢p<g¢g P23+ +@p+in | 2¢p<qg
Tabe, q1,42,q3 € {5 11 € N} Tabe, q1,q2,q3 = 0

Figure 2.5: Original linear program after modification (left) and its approximation (right).

The optimal solution for the approximation linear program in the branch ¢; > ¢ is

b= % ~ 3.69. For the branch ¢; < g2, 2¢» > ¢3 we have optimal solution ¢ = % ~ 2.82,
2641

and finally for the branch ¢; < g2, 2¢2 < ¢3 the optimal solution is ¢ = Tgi+ ~ 2.6569.

Theorem 2.13. The asymptotic competitive ratio for the online unit interval graph coloring

problem is at least 2323 ~ 2.6569.

2.3.2 Proper Interval Representation

Now we consider the game in which Presenter provides a proper interval graph repre-
sentation. In this variant we show that Presenter has a strategy that forces Algorithm
to use at least 27 times more colors that is required to properly color the presented set
of intervals.

Our strategy for Presenter consists of 2 phases called separation phase and final phase.
Let N be some positive integer. In the separation phase Presenter introduces two
cliques @, and ). Each of presented cliques contains exactly 3N? intervals and each of
them has bandwidth 5. As in the online unit interval graph coloring, we say that an
interval I belonging to a clique (); is marked if [ is the earliest interval from (); colored
with its color.



26 Different Interval Graph Representations

At first, Presenter introduces intervals from the clique (), ensuring that there is a
point p;, such that the right endpoints of all marked intervals from (); are to the right
of p;, and the right endpoints of all not marked intervals from @, are to the left of p;.
Then, Presenter introduces intervals from the clique @), ensuring that all of them are
to the right of (), and there is a point pr such that the left endpoints of all marked
intervals from (), are to the left of pr and the left endpoints of all not marked intervals
from (), are to the right of pr. Let M be the set of marked intervals from (); and M, be
the set of marked intervals from M,, see Figure 2.6.

Observe that the presented set of intervals is N-colorable. Hence, if Algorithm
used more than 3N different colors in some clique ();, then it used at least 3 times more
colors than necessary and we are done. So, assume that Algorithm used less than 3V
different colors in each clique. Thus, all marked intervals can be properly colored with
1 color.

All intervals presented in the final phase have bandwidth 1. There are two different
ways to play the final phase, and Presenter chooses the correct one depending on the
number of common marked colors. For i € [2] let C; be the set of colors used by
Algorithm to color intervals from A/;.

Case 1: |C, UCy| > 2N
If Algorithm used at least 2N different colors, then in the final phase Presenter intro-
duces N — 1 additional intervals [py, pr|. Clearly, Algorithm has to use new colors to
color the presented intervals. Hence, in this case Algorithm used at least |C; U Cs| +
N —12 9N — 1 colors, while the presented graph is clearly N-colorable.

left clique ()1 right cliqgue Q2
! not marked 3 final phase ! not marked 3
N | intervals } height: N — 1 ! intervals }
3 1] M, 3 | M, 1 |

Figure 2.6: Strategy construction in case |C7 U Cs| > %N .

Case 2: |C} U Cs| < 2N, or equivalently [C; N Cy| = 3N
Observe that Algorithm has to use at least N colors on each clique, so |C;| > N and
|C5] = N. Moreover, |Cy] + |Cy] = [CyUCo| + [C1 NGy, so if |G UCy| < 2N, then
|ICiNCy| = 3N.




2.3. Lower Bounds 27

If Algorithm used at least 2N common colors in both cliques, then in the final phase
Presenter plays the EL-separation for £k = N — 1 in a similar way as it does in the
strategy 2+. So, all intervals from EL-initial and EL-final phase intersect all intervals
from the set M, and all intervals from EL-separation phase intersect all intervals from
the set M, see Figure 2.7. Thus, all colors used by Algorithm in this phase do not
belong to C; N C,, and Algorithm was forced to use at least |Cy N Co| + 2| 5(N —1)| +
[3(N = 1)] = 9N — 2 colors in total. It is easy to see that the resulting set of intervals
is N-colorable, since all intervals introduced during the EL-separation can be colored
with colors from [N — 1], we can color all marked intervals with a color N, and all not

marked intervals from cliques ¢); and @; with colors from [N — 1].

left clique ()1 right cliqgue Q2
} i EL-separation phase EL-final phase } i
} | height: [3(N —1)] height: [$(N —1)] } |
} not marked 3 } not marked 3
| intervals | | intervals |
N : | : l
1 } EL-separation phase EL-initial phase 1 }
1 | height: [$(N —1)] height: |1(N —1)| | |
3 ol My | 3! M Ik 1

Figure 2.7: Strategy construction in case |C; N Ca| > 3N.

We summarize our considerations in the following theorem.

Theorem 2.14. For every positive integer N there is a strateqy for Presenter in the online
proper interval coloring, that forces Algorithm to use at least 3N — 2 different colors, while the
presented set of intervals is N-colorable.

Corollary 2.15. Both absolute and asymptotic competitive ratios in the online proper interval
coloring are at least 25.

Clearly, the presented strategy works when Presenter can provide a proper inter-
val representation, but it does not work when it is forced to provide a unit interval
representation. The problem lays in the final phase when Presenter has two different
strategies to finish the game. Observe that the strategy used in Case 1 in the unit case
requires that the distance between p;, and pp, is close to 1, while we need this distance
to be roughly 2 in order to perform the EL-strategy in Case 2 in the unit intervals realm.

2.3.3 Unit Interval Representation

The last remaining problem to consider is the game in which Presenter provides a unit
interval representation. In this variant we show a strategy for Presenter that forces




28 Different Interval Graph Representations

Algorithm to use at least 2.1571 times more colors than is needed to properly color the
presented set of intervals.

Our strategy for Presenter in this case is a mixture of bin packing and interval sep-
aration technique. In order to simplify our description of the strategy, we split it into
two parts.

First we show how to choose endpoints for new intervals. Here we modify the
notion of a marked interval to be now the earliest shown interval colored with its own
color. Our strategy for Presenter maintains two disjoint cliques ); and @, such that
()1 is to the left of ();. During the game Presenter ensures that right endpoints of all
marked intervals from @); are the rightmost endpoints in (), and left endpoints of all
marked intervals from (), are the leftmost endpoints in ();. Moreover, it makes sure
that the cliques ); and (), are close enough, so that there is the unit interval I that
intersects all marked intervals but none of not marked ones. To achieve this goal,
Presenter uses two variables ay, b; to control intervals added to ); and another two
variables ay, b, for intervals added to ;. At the very beginning of the game a; = 0,
by = 3, a, = 1, and b, = 2. While adding a new interval to Q;, an interval [¢ — 1, ],
where ¢ = %(al + by), is presented. If the Algorithm uses a new color for the presented
interval, then Presenter changes b, to ¢ and b, to ¢ + 1. Otherwise, Presenter changes a;
to ¢ and as to ¢ + 1. Analogously, if Presenter wants to add a new interval to (),, then it
presents an interval [g, ¢ + 1] where ¢ = $(as + b,). If the presented interval is marked,
then Presenter changes a; to ¢ — 1 and a, to ¢. Otherwise, Presenter changes b; to ¢ — 1
and b, to q.

To observe that Presenter using this strategy shows in fact two disjoint clique, note
tirst that all intervals from ), contain the point 0, and all intervals from (), contain the
point 2. Thus, both sets of intervals in fact represent cliques. Moreover, none of the
presented intervals intersect the interval (3, 1). Hence, Q1 and @, are disjoint. Finally,
it is easy to check that, at each moment, the interval [p, p + 1] where p = 3(a; + b ) inter-
sects all marked intervals and none of not marked ones. This finishes the description
of our interval separation technique.

Now we describe the part corresponding to bandwidths. This part is very similar
to the strategy we presented for the online unit interval graph coloring in Section 2.3.1,
but now we have at most 2 phases instead of 3, and we use different special strategy.
Again let N be some positive integer divisible by 12, ¢ € (0,5;) and w; = & + ¢,
wy = 1 + e. However, this time to control the sizes of the cliques presented in the i-th
phase we need two additional numbers K; = %N 2and K, = }lN 2. All intervals in Q4
have bandwidth +, while intervals in @), presented in the i-th phase have bandwidth
w;. In the first subphase of the i-th phase Presenter at first introduces K; new intervals
belonging to ()1, and then N new intervals belonging to (). If Algorithm uses more
than N colors in total, then Presenter stops the game. Otherwise, Presenter continues
the game in the second subphase. In this subphase, as in Section 2.3.1, Presenter uses
some special strategy called strategy 1+, see Lemma 2.16, but only if the ratio guaran-
teed by this strategy is high enough. If not, then Presenter skips this subphase and
continues the game in the (i + 1)-th phase. Yet again, we ensure that if after the first
subphase of the second phase Algorithm has still used less than N + 1 colors in total,
then the competitive ratio guaranteed by strategy 1+ is big enough, so the game even-



2.3. Lower Bounds 29

tually terminates after at most 2 phases. This finishes the high-level description of our
strategy.

Lemma 2.16 (The strategy 1+.). Suppose that Algorithm uses at most N colors on intervals
from Q1 U Q2. Moreover, assume that ()1 U Q2 can be colored offline by H colors in such a
way that exactly h colors are used to color all marked intervals. Then there is a strategy for
Presenter, to expand the unit interval representation of ()1 U QQo, that forces Algorithm to use
H — h — 1 additional colors, and the resulting set of unit intervals is still H-colorable.

Proof. In order to force Algorithm to use additional colors Presenter introduces H —h—1
intervals [p, p + 1], where p = %(al + by), each of them of bandwidth 1. As we already
noticed, those intervals intersect all marked intervals and do not intersect any other
one. Hence, Algorithm has to use new colors to color the additional intervals.

Now we show that we can properly color the presented set of intervals using at
most H hues in total. All intervals in the clique (); have bandwidths % Hence, if
Algorithm used at most N different colors, then we are able to color (), in such a way
that all marked intervals in (); receive a hue 1. Without loss of generality, we assume
that we can color (), with H hues in such a way that all marked intervals in @), are
colored with hues from [h]. Hence, we can use hues h + 2,..., H to color the last

H — h — 1 intervals, and we are done. l

Now we prove that the presented strategy guarantees that Algorithm uses at least
2.1517 times more colors than one needs to properly color the presented instance. First,
we prove that if Algorithm uses more than N colors, then competitive ratio is greater
than 3. In this case Presenter stops the game just after some first subphase and the
presented graph consists of two disjoint cliques () and );. All intervals in (); have
bandwidths + and there are at most K; + K, = $N? of them. Thus, one can easily
color @, with at most N colors. Moreover, since wy + wy = £ 4 2¢ < 3, we can color
all intervals in Q5 with %N colors. Thus, in this case Algorithm uses at least 3 times
more colors than one needs to color () U (», and we are done.

In order to analyze all possible games between Presenter and Algorithm in the case
when Algorithm uses at most IV colors, we introduce some notation. As before we
define variables X, ;, but in this case we consider only those tuples (a, b) for which we
have aw; + bw; < 1. Let Ly ; be the number of colors used by Algorithm in the second
phase to color intervals from @); that were already used in the first phase to color some
intervals from (). Let L, the number of intervals from (), that were marked in the
i-th phase. Analogously, for 1 < j7 < i < 2 let R;; be the number of colors used
by Algorithm in the i-th phase to color intervals from (), that were already used in
the j-th phase to color some intervals from ();. Similarly, R;, denotes the number of
intervals from (), that were marked in the i-th phase.

We also define several grouping variables, i.e. L; = >, L; ; denotes the total num-
ber of colors used by Algorithm in the ¢-th phase to color intervals from @), that were
not used to color intervals from @) in the previous phases. Analogously, R; =}, R; ;.
We denote Z; the total number of color used by Algorithm in the first ¢ phases, so that

Z; = ngz' (LJ':O + RJ,O)-

Clearly, our strategy for Presenter implies several constraints on the introduced
variables. In the first phase Presenter shows K; = %N 2 intervals on the left side, and



30 Different Interval Graph Representations

all those intervals have bandwidth <. Thus, Algorlthrn has to use at least &1 = LN
colors to color them, and so we have a constraint L, > 12N Analogously, after second
phase (), consists of K + K, = éN 2 intervals, so Ly + Ly > N Moreover, it is obvious
that Lo; < Ry, and Zf: i R; ; < Lj, since Algorithm carmot use more colors than one
set contains.

Analogously to Section 2.3.1, our next lemmas and corollaries show how many
additional colors Presenter can force on Algorithm using the strategy 1+.

Lemma 2.17. The strategy 1+ is applicable in the first phase with H = 5N and h = [ 5 R o].

Proof. Consider the presented set of intervals after the first subphase of the first phase.
(- contains N intervals, each of bandwidth L 5 +e and exactly R; o are marked. Hence,
we can easily color @, with 5N colors in such a way that [5R; o] colors are used to
color all marked intervals in Qz Note that (); contains exactly K; = %N 2 intervals and
all of them have bandwidth <. Thus, we can also color Q; using exactly ;5N colors. []

Corollary 2.18. If Presenter decides to play the strategy 1+ in the first phase, then the achieved

competitive ratio is at least 1 + 124 — Fio _ 2

Lemma 2.19. If R,y < Ry, then the strategy 1+ is applicable in the second phase with
H = 3N and h = [$Ry,].

Proof. Consider the presented set of intervals after the first subphase of the second
phase Clearly, all $N? intervals in Q; can be colored using exactly N colors. Since

Etet+i+e= % + 2¢ < 3, we can color 3 light intervals and 3 heavy ones with
the same color. We label light intervals 1!, ..., I} in such a way that marked intervals
come first. Analogously, we label heavy intervals If', ..., I%. For every i € [f1N]| we

color six intervals I}, ,, I}, |, I}, I}, I% |, I' with a color i. We just properly colored
all intervals in Q, using H = ;N colors, and it is easy to see that all marked intervals

are colored with colors from [h] where h = [$R,]. O
Corollary 2.20. If R, < Rs and Presenter decides to play the strateqy 1+ in the second
phase, then the achieved competitive ratio is at least 1 + 342 — % -

Lemmas 2.17 and 2.19 provide colorings that use small number of colors for marked
intervals and also use the optimal number of colors on the whole graph. In the next
lemma we show a coloring that uses small number of colors on marked intervals, but
on the whole graph requires more colors than it is needed. Unfortunately, this makes
the optimum a function of R, ; and R, and eventually leads to a non-linear constraint.

Lemma 2. 21 If Ry 0 > Ry, then the strategy 1+ is applicable in the second phase with
H = lN —I— Rl 0 R270 + 3 and h = %Rl,o -+ iRQ,O + 2.

Proof. Con51der the presented set of intervals after the first subphase of the second
phase. Clearly, we can color all heavy marked intervals and R;, marked light inter-
vals using [$R2p] colors. We color the remaining light marked intervals using addi-
tional [£ (R — R» O)l colors Hence, we colored all marked intervals using [+ R | +

[ 5 (R0 — Roo)| < 15R10+ 1Roo+2 colors. At this point there are N — R; o not colored
hght intervals and N — R not colored heavy ones. We color them using l (N — Ry O)l
colors. Thus, we used at most % 3N+ R1 0— RZO + 3 colors to color all intervals from

Q2. ]



2.3. Lower Bounds 31

Corollary 2.22. If R,y > Ry and Presenter decides to play the strategy 1+ in the second

; s . Zy—15R1,0—$R2,0—3
phase, then the achieved competitive ratio is at least 1 + TNT L Rro- L Ragt3"

Let us rearrange the bound we get from the above corollary.

Zy— ERig— 1Ry —3 122, — Rip = 3Ra0 — 36

Oy =1+ =1+
N IN+LRig— 5Ra0+3 AN + Rip — Rap + 36

(Cy — 1)(AN + Ry — Rag + 36) > 1225 — Ry — 3Ra0 — 36
A(Cy — 1)N 4 36Cy > 127, — CyRio + (Cy — 4)Rayg

Note that if Cy is a constant, then this inequality is a linear constraint in terms of
ZQ, Rl,O and RZQ.

Xap, Liy Ry, Ly j, Ry j € N

Yoap @Xap =N #intervals in (), in 1st phase
Yot Xap =N #intervals in () in 2nd phase
za>0’b Xop = Ry #new colors in ()2 in 1st phase
Y b0 Xop = Ra #new colors in () in 2nd phase
Vid ;i Lij=Li #new colors in (), in i-th phase
Vi i Rij =R #new colors in ()9 in i-th phase
Vid i Ljo+ Rjo = Z; #different colors after i-th phase

2

Vi e Lig < Rjo
2

Vi ie Rij < Ljo

Ly > &N

Li+ Ly > %N

Cn21+ 32— +Rio— % ratio after 1st phase
Cn21+3Z,— Rop— & 2nd phase ratio under Ry o < Ra
4Cy—1)+3x > 127, Cxp o+ SR, 2nd phase ratio under Ryg > Ray

Table 2.3: The set of constraints describing the game between Algorithm and Presenter for a given V.

We just presented how to encode all possible games between Presenter and Algo-
rithm in the proposed schema, see Table 2.3 for a quick summary. As in the online
unit interval graph coloring, see Section 2.3.1, we do not deal with the original set of
constraints, but instead we introduce new variables z,; = %me, i = %Rm etc., and
rearrange inequalities to get an approximation presented in Table 2.4. Observe that
constraints listed in Table 2.4 do not represent a simplex. This is because in the last
inequality there is a combined term %C ~710 and both Cy and 7 o are variables.

We solve the first branch (1 < ro, without the last constraint), treating it as a
regular linear program and we get the optimal solution Cy = 2.1571.

To solve the branch 7 o > 75 without the last second constraint, we binary search
the value of C'y by testing the emptiness of the simplex defined by the set of constraints



32 Different Interval Graph Representations

presented in Table 2.4 under the assumption that Cy is a constant. We are binary
searching between 1 and 3, since competitive ratio cannot be less than 1 and if it is
greater than 3, then we are done. Using this method we get the result Cy = 2.211 £
0.001.

Thus, we obtained a lower bound of 2.1571 on the asymptotic competitive ratio in
the online unit interval coloring.

Theorem 2.23. Both absolute and asymptotic competitive ratios in the online unit interval
coloring are at least 2.1571.

Tap, liy T, i g, miy = 0
Db AZap =1

Zab b.’ll'a,b =1

za>0,b Lab = T1

Zb>0 Lop = T2

Vi Z]‘ l@j = lz

Vi Z]- Ti,j =T

Vi Z;’:l lj,o + 7”]',0 = Z;
Vi Y by <o
Vi 3rrig < o

1
h >
L4l >3
CN—l 2 1221 —T1.0
CN -1 2 322 —T20 under 71,0 2,0

<r
4(0]\[ — 1) > 122’2 — Cer,O + (CN — 4)7"270 under 1,0 2 2.0

Table 2.4: The set of constraints describing an approximation on the game between Algorithm and
Presenter.



3
Online Interval Coloring
of Short Intervals

3.1 Introduction

The competitive ratio for the online interval coloring was established by Kierstead and
Trotter [26]. They constructed a strategy for Algorithm that uses at most 3w—2 colors on
w-colorable set of intervals. They also presented a matching lower bound — a strategy
for Presenter that forces Algorithm to use at least 3w — 2 colors. The unit variant of
the online interval coloring was studied by Epstein and Levy [12]. They presented a
strategy for Presenter that forces Algorithm to use at least | % | colors. Moreover, they
noticed that a natural greedy algorithm uses at most 2w — 1 colors.

A natural question arises, what happens in between the interval and unit interval
graph classes. In this chapter we ask about the optimal competitive ratio of online col-
oring algorithms for intersection graphs of intervals with lengths restricted to a fixed
range, say [1,0]. In particular, we give lower and upper bounds on the asymptotic
competitive ratio in this setting as functions of o.

It seems natural to ask if it is possible to improve the bound of 3w — 2 by assum-
ing that interval lengths belong to a fixed range. The study of interval graphs with
bounded length representations was initiated by Fishburn and Graham [14]. How-
ever, the work done here focused mainly on the combinatorial structure, and not on its
algorithmic applications. The lengths of presented intervals in the Kierstead and Trot-
ter strategy increase with the increasing w. For this reason, with the interval lengths
restricted to [1, o], their lower bound is only for the absolute competitive ratio and does
not exclude, say, an algorithm that always uses at most 2w+ 0" colors. In Theorem 3.20
we rule out the existence of such an algorithm.

3.1.1 Owur results
Algorithm.

Our algorithm is inspired by the recent result for online coloring of unit disk inter-
section graphs [22]. We cover the real line with overlapping blocks, grouped into a
constant number of classes. Each class gets a private set of available colors. When
an interval is presented, the algorithm chooses a block in a round-robin fashion, and
greedily assigns a color from its class.

33



34 Online Interval Coloring of Short Intervals

Lower Bounds.

In order to prove lower bounds we present a series of strategies for Presenter with the
following consequences:

1. For every o > 1 there is no online algorithm for o-interval coloring with the
asymptotic competitive ratio less than 5/3.

2. For every o > 2 there is no online algorithm for o-interval coloring with the
asymptotic competitive ratio less than 7/4.

3. Forevery e > 0 thereis a large enough o > 1 such that there is no online algorithm
for o-interval coloring with the asymptotic competitive ratio 5/2 — e.

The following, more illustrative, statement is a direct corollary of the last result.

Corollary 3.1. There is no online algorithm that for every o, w and f uses at most 2.499 - w +
f (o) colors for w-colorable graphs in o-interval coloring.

All our lower bounds can be considered as generalizations of the EL-separation strat-
egy presented in Chapter 2. The novel technique is the recursive composition of strate-
gies, materialized in Lemmas 3.7, 3.10, 3.13, and 3.18. Our 5/2 lower bound borrows
also from the work of Kierstead and Trotter [26]. However, in order to control the
length of intervals independently of the number of colors, we cannot simply use the
pigeonhole principle, as they did. Instead, we develop Lemmas 3.16 and 3.17, which
let us overcome this issue, at a cost of a worse bound for the competitive ratio, i.e. 5/2
instead of 3.

3.2 Algorithm

In this section we present our (1 + o)-competitive algorithm for the online o-interval
coloring.

Theorem 3.2. For every o € Q, 0 > 1, there is an algorithm for online o-interval coloring
with 1 + o asymptotic competitive ratio.

Proof. Let us present an algorithm which, in principle, works for any real o, however
only for a rational o it achieves the declared competitive ratio. The algorithm has a
positive integer parameter b. Increasing the parameter brings the asymptotic com-
petitive ratio closer to 1 4+ ¢ at the cost of increasing the additive constant. More
precisely, given an w-colorable set of intervals our algorithm colors it using at most
[b-(1+0)] (£+b—1) colors, and thus its competitive ratio is L;ro’ﬂ + O(1/w). For
a rational o, in order to obtain exactly the declared 1 + o asymptotic competitive ra-
tio it is sufficient to set b to the smallest possible denominator of a simple fraction
representation of 0. Let ¢ = [b- (1 + 0)]. The algorithm will use colors from the set
{0,1,...,o—1} x N.

Now, let us consider the partition of the real line into small blocks. For i € Z, the i-th
small block occupies the interval [i - 3, (i + 1) - 7). Moreover, we define large blocks. The

i-th large block occupies the interval [i - §,i - 7 + 1). See Figure 3.1.



3.2. Algorithm 35

Figure 3.1: Small blocks (up), and large blocks (down), for b = 3

Let us point out certain properties of the blocks, which will be useful in the further
analysis. Each large block is the sum of b consecutive small blocks, and each small
block is a subset of b consecutive large blocks. Further, length of a large block is 1,
and for any two intervals of length in [1, o] that both have the left endpoint in the same
large block, the two intervals intersect. Thus, the intervals whose left endpoints belong
to a fixed large block form a clique. Finally, if the indices of two large blocks differ by
at least ¢, then any two intervals — one with the left endpoint in one block, the other
with the left endpoint in the other — do not intersect.

With each small block the algorithm associates a small counter, and with each large
block the algorithm associates a large counter. Let S; denote the small counter of the
i-th small block, and L; denote the large counter of the i-th large block. Initially, all the
small and large counters are set to zero.

To assign a color to an interval, the algorithm proceeds as follows:

1. Let i be the index of the small block containing the left endpoint of the interval.

2. Let j be the index of the large block containing the left endpoint of the interval
such that j = 5; (mod b). Note that there is exactly one such j.

3. Assign to the interval the color (j mod ¢, L,).
4. Increase the small counter S; by one.
5. Increase the large counter L; by one.

First let us argue that the algorithm outputs a proper coloring. Consider any two
intervals which were assigned the same color. Let j; and j; denote the indices of the
large blocks selected for these intervals by the algorithm. Since the colors of the two
intervals have the same first coordinates, we have that j; = j» (mod ¢). However, since
the second coordinates, which are determined by large counters, are also the same, j;
and j; must be different, and thus they differ by at least ¢. Hence the left endpoints of
the large blocks j; and j, are at least 1 + o apart, and the two considered intervals do
not intersect, thus the coloring is proper.

It remains to bound the number of colors in terms of the clique number w. Let j
be the index of the maximum large counter L;. Clearly, the algorithm used at most
¢ - L; colors in total. Let C' denote the set of intervals with the left endpoints in the
j-th large block and colored with a color in {j mod ¢} x N. Observe that |C| = L. Let
z), denote the number of intervals in C' which have the left endpoint in the k-th small
block. Recall that the j-th large block is the sum of b small blocks —indexed j, j +1, ...,



36 Online Interval Coloring of Short Intervals

j+b—1-and thus L, = z; + ;41 + - - - + xj35—1. Now, observe that, because of the
round robin selection in the step 2 of the algorithm,

Let D denote the set of all intervals with the left endpoints in the j-th large block. We
can bound the number of intervals in D

j+b—1 j+b—1
D = Y S = > (b-(ax—1)+1) =b-(L;—b)+b.
k=j k=j

Recall that D is a clique and thus the clique number w of the input graph is at least the

size of D. Therefore [; < (-1

,— and the algorithm used at most

w41+®y(%+b—g

colors. 0

Note that for ¢’ > o every o’-interval coloring algorithm is also a correct o-interval
coloring algorithm, with the same upper bound on its competitive ratio. Therefore, for
o € R\ Q Theorem 3.2 yields an online o-interval coloring algorithm with a compet-
itive ratio arbitrarily close to 1 4+ o. This distinction between rational and irrational
values of o becomes somewhat less peculiar in the light of the results of Fishburn and
Graham [14], who proved, among other things, that the classes of graphs with interval
representation with lengths in [1, o] are right-continuous exactly at irrational o.

Until now, the state-of-the art was the 2-competitive FirstFit algorithm [13] foro = 1
and the 3-competitive Kierstead-Trotter algorithm [26] for o > 1. Thus, our algorithm
matches the performance of FirstFit for 0 = 1, and beats the Kierstead-Trotter algo-
rithm up until o = 2.

3.3 Lower Bounds

In this section we show several families of strategies for Presenter that force Algorithm
to use many colors while the introduced set of intervals is colorable with a smaller
number of colors, and contains only short intervals. We start with a short, informal
presentation of these strategies. First, let us recall the EL-strategy:

1. Presenter plays a clique of % initial intervals. Algorithm has to use 3 different
colors, let X denote the set of these colors.

2. To the left of the initial intervals, Presenter plays a clique of w separation intervals
so that all intervals colored with colors in & are slightly shifted to the left of all
intervals colored with colors not in X'

3. Presenter plays a clique of § final intervals that intersect all the initial intervals,
and § right-most separation intervals.



3.3. Lower Bounds 37

In Section 3.3.1 we generalize this strategy. We observe, that instead of presenting a
clique in the first step, Presenter can use an arbitrary strategy that requires slightly
shorter intervals. For o-interval coloring we can construct a recursive strategy that
applies this trick roughly o times. Using this simple observations we obtain a family
of strategies for different 0. Corollary 3.8 gives that, for example, there is no online
algorithm with (1.6 — ¢) asymptotic competitive ratio for (2 + ¢)-interval coloring (for
any € > 0).

Theorem (Reminder of Theorem 3.12). For every o > 1 there is no online algorithm for
o-interval coloring with the asymptotic competitive ratio less than 5/3.

Now, consider the following strategy for Presenter in online (1-+¢)-interval coloring
(see the proof of Lemma 3.10 for all the details, Figure 3.3 may help visualize this
strategy).

1. Presenter plays a clique of s initial intervals of length 1. Algorithm has to use s
different colors, let X denote the set of these colors.

2. To the left of the initial intervals, Presenter plays a clique of w left separation inter-
vals of length 1 so that all intervals colored with colors in X" are slightly shifted to
the left of all intervals colored with colors not in X'. Let ) denote the set of colors
of 5 right-most left separation intervals.

3. To the right of initial intervals, Presenter plays a clique of w right separation in-
tervals of length 1 so that all intervals colored with colors in X U Y are slightly
shifted to the right of all intervals colored with colors notin X U Y.

4. Presenter plays a clique of 2 final intervals of length 1 + ¢ that intersect all the
initial intervals, % right-most left separation intervals, and § left-most right sep-
aration intervals.

We get that there is no online algorithm with (2 — ¢;) asymptotic competitive ratio
for (1 + €;)-interval coloring (for any €, €2 > 0), i.e. we've sketched an informal proof
of Theorem 3.12. In Section 3.3.2 we use the above strategy for (1 + ¢)-intervals as a
recursive step that can be used to obtain strategies for larger o’s. We get another family
of strategies, where for o-interval coloring we can apply the recursive step roughly
times. Corollary 3.11 gives that, for example, there is no online algorithm with 1.7
asymptotic competitive ratio for (3 + €)-interval coloring (for any € > 0).

Theorem (Reminder of Theorem 3.15). For every o > 2 there is no online algorithm for
o-interval coloring with the asymptotic competitive ratio less than 7/4.

Now, consider the following strategy for Presenter in online (2+¢)-interval coloring
(see the proof of Lemma 3.13 for all the details, Figures 3.4 and 3.5 may help visualize
this strategy).

1. Presenter plays a clique of % left initial intervals of length 1. Algorithm has to use
% different colors, let X} denote the set of these colors.



38 Online Interval Coloring of Short Intervals

2. To the right of the left initial intervals, Presenter plays a clique of § right initial
intervals of length 1. Algorithm has to use % different colors, let > denote the set
of these colors.

3. To the left of the left initial intervals, Presenter plays a clique of w left separation
intervals of length 1 so that all intervals colored with colors in X are slightly
shifted to the left of all intervals colored with colors not in &;. Let ); denote the
set of colors of ¢ right-most left separation intervals.

4. To the right of the right initial intervals, Presenter plays a clique of w right separa-
tion intervals of length 1 so that all intervals colored with colors in & are slightly
shifted to the right of all intervals colored with colors not in &5. Let ), denote the
set of colors of ¢ left-most right separation intervals.

5. Let Cl = Xl U yl, and C2 = X2 U yg.

(a) If |C; UCy| > 2, Presenter plays a clique of ¥ final intervals of length 2 + ¢
that intersect all the initial intervals, § right-most left separation intervals,
and 3 left-most right-separation intervals. In total, Algorithm has to use at
least ™ colors in this case.

(b) If |C1 UCy| < 2 (which implies [C; N Co| > 22), Presenter plays a clique of £
pre-final intervals of length 1 + € that intersect all the right initial intervals,
and ¢ left-most right separation intervals. Then, Presenter plays a clique of
5 final intervals of length 1 + € that intersect all the left initial intervals, 5
right-most left separation intervals, and all the pre-final intervals. The sets
of colors of final and pre-final intervals are disjoint, and moreover do not
intersect with C; N Cy. A short calculation shows that in this case Algorithm
also has to use at least % colors.

Thus, we get that there is no online algorithm with (I —e¢;) asymptotic competitive ratio
for (2 + €;)-interval coloring (for any €;, €2 > 0), i.e. we've sketched an informal proof
of Theorem 3.15. In Section 3.3.3 we use the above strategy for (2 + ¢)-intervals as a
recursive step that can be used to obtain strategies for larger o’s. We get another family
of strategies, where for o-interval coloring we can apply the recursive step roughly
log o times. Corollary 3.14 gives that, for example, there is no online algorithm with
1.8 asymptotic competitive ratio for (8 + €)-interval coloring (for any ¢ > 0). To get a
lower bound better than 2 we combine our method with some ideas from the lower
bound by Kierstead and Trotter [26]. In Section 3.3.4 we prove Corollary 3.19, which
gives that for any € > 0:

1. there is no 2-competitive online algorithm for (4* + ¢)-interval coloring,
2. there is no 2.4-competitive online algorithm for (4**¢ + ¢)-interval coloring, and

3. there is no 2.49-competitive online algorithm for (4™ + ¢)-interval coloring.

Table 3.1 summarizes the aforementioned strategies, and illustrates the growth of
the interval length o required to prove better and better lower bounds. To properly
capture asymptotic properties of the introduced strategies we give the following for-
mal definitions.



3.3. Lower Bounds 39

ratio interval length strategy

1.5 1 Epstein and Levy [13]

1.6 2+c¢ Corollary 3.8, n = 2 iterations

1.66 1+e¢ Corollary 3.11, n = 1 iteration

172 3+e¢ Corollary 3.11, n = 2 iterations

1.7 2+4¢€ Corollary 3.14, n = 1 iteration

1.81 8+ Corollary 3.14, n = 2 iterations

2 439 4 ¢ Corollary 3.19, n = 3 iterations, v = 0.21030395
2.4 4986 ¢ Corollary 3.19, n = 6 iterations, v = 0.0339
2.49 4770 4 ¢ Corollary 3.19, n = 10 iterations, v = 0.003449

Table 3.1: Summary of selected strategies for Presenter

Definition 3.3. For w,C € Ny and o, M € R, an (w,C, o, M)-strategy is a strategy for
Presenter that forces Algorithm to use at least C' colors subject to the following constraints:

1. the set of introduced intervals is w-colorable,
2. every introduced interval has length at least 1 and at most o,

3. every introduced interval is contained in the interval [0, M].

We are interested in providing strategies that achieve the biggest possible ratio <
for large w. This motivates the following definition.

Definition 3.4. An («, 0, M)-schema is a set of (w, C,,, o, M )-strategies for all w € N such
that C, = aw — o(w).

The o(w) term in the above definition accounts for the fact that sometimes in a proof
we would like to introduce, say, %-clique. Then, for odd w’s a rounding is required,
which results in small inaccuracies we need to control.

Remark 3.5. Note that the existence of an (c, o, M )-schema implies a lower bound of o for the
asymptotic competitive ratio of any online algorithm solving the o-interval coloring problem.

To put the above definitions in context, note that Kierstead and Trotter [26] give, for
allw € Ny, an (w, 3w — 2, f(w), f(w))-strategy. However, their family of strategies does
not yield an («, o, M)-schema, because the length of the presented intervals grows with

Ww.

Example 3.6 ((1, 1, 1)-schema). For any w € N, a strategy that introduces the interval [0, 1]
in every round 1,...,w is an (w,w, 1, 1)-strategy. The set of these strategies is a (1,1,1)-
schema.

In this section we show a series of constructions that use an existing schema to
create another schema with different parameters. The (1,1, 1)-schema given above is
the initial step for those constructions.

Let S be an (w, C, 0, M)-strategy. We say that Presenter uses strategqy S in the interval
[z, z 4+ M] to denote that Presenter plays according to .S, presenting intervals shifted by
x, until Algorithm uses C' colors.



40 Online Interval Coloring of Short Intervals

3.3.1 Warm-up

Our first construction is a natural generalization of the strategy for unit intervals given
by Epstein and Levy [13]. It is surpassed by more involved strategies coming later, but
it serves as a gentle introduction to our framework.

Lemma 3.7. If there is an (o, 0, M)-schema, then there is a (2 — 25, M + ¢, M + 1+ ¢)-
schema for every e > 0.

Proof. To prove the lemma we need to provide an (w, (2 — —5)w — o(w), M + €, M + 1 + ¢)-
strategy for every w € N,. Let us fixanw € N, and let ' = |25 |. The (o, 0, M)-
schema contains an (W', aw’ — 6, 0, M)-strategy S for some § = o(w’). Similarly to the
EL-separation, the strategy for Presenter consists of three phases, see Figure 3.2. In
the first phase, called the initial phase, Presenter uses strategy S inside the interval
[1+eM+1+¢. Let C = aw’ — 0 and let X’ denote the set of C' colors used by Algo-
rithm in the initial phase.

M +e€
separation phase final phase

height: w — W’

height: w — w’ 1
colors: |Z]| =w — W' 1

1 separation phase i i initial phase |
1 height: w’ '+ height: &’ Dol w!
| colors: |Y| = o’ 1 colors: |[X|=aw' —d |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

M+1+e¢

Figure 3.2: Strategy construction in Lemma 3.7

The second phase, borrowed from [13, 4], is called the separation phase. In this phase,
Presenter plays the following separation strategy for w rounds. Let/; = Oand r; = §. In
the i-th round of the separation phase Presenter introduces the interval [4£%: Lifri 4 1],
If Algorithm colors the interval with one of the colorsin &, let ;41 = li;” and ;.1 =1y,
which means that the next interval will be shifted slightly to the right. Otherwise, let
liym = l;and 11 = l%, which means that the next interval will be shifted slightly
to the left. Observe that all intervals introduced in the separation phase have length 1
and V;1t" < £ Thus, every interval introduced in the separation phase is contained
in [O, 1+ g} and any two of those intervals intersect. Furthermore, the choice of /;’s
and r;’s guarantees that for any two intervals z, y introduced in the separation phase,
x colored with a color in X, and y colored with a color not in X, we have that the
left endpoint of z is to the left of the left endpoint of y. Let Y be the set of w’' right-
most intervals introduced in the separation phase. Let ) be the set of colors used by




3.3. Lower Bounds 41

Algorithm on the intervals in Y. As C' 4w’ < w, we get that sets of colors X and ) are
disjoint.

For the last phase, called the final phase, let r be the left-most right endpoint of an
interval in Y. In the final phase Presenter introduces w — w’ times the same interval
[r, M + 1+ ¢]. This interval intersects all intervals introduced in the initial phase, all
intervals in Y, and no other interval introduced in the separation phase. Thus, Algo-
rithm must use w — w’ colors in the final phase that are different from the colors in both
X and Y. Let Z denote the set of colors used by Algorithm in the final phase.

The presented set of intervals is clearly w-colorable and Algorithm used at least

X[+ Y|+ 2| = aw' =6+ W +w—w = (2 —7)w — o(w) many colors. The longest
interval presented has length M + & and all intervals are contained in [0, M + 1 + €].
Thus, we have constructed a <2 — +1 M +e, M+ 1+ e> -schema. H

F2n
e > 0, where F, is the n-th Fibonacci number (Fy = Fy = 1, F,10 = F,11 + F)).

Corollary 3.8. There is an <M, n+en+1+ e>-schema, for every n € N, and every

Proof. Starting witha (1,1, 1)-schema and repeatedly applying Lemma 3.7 one can gen-
erate! a family of (a,, 0y, + €, M, + €,)-schemes, such that a1 = 2— ﬁ, Oni1 = M,
Myy1 = M, +1and oy = 09 = My = 1. Solving the recurrence equations we get

F
a, = ;';“,an—n,and]\/[ =n+1. O

Note that this method cannot give a lower bound with the multiplicative factor

better than lim,, .., = ;"“ = 1*‘[ ~ 1.61803. However, we can get arbitrarily close to
this bound. That is, for every e > 0 there is a 0 and wy such that for each w > w there
is a strategy for Presenter to present intervals of length at most o and force Algorithm

1+v5
2

to use ( - e) - w colors on an w-colorable set of intervals.

Observation 3.9. There is no online algorithm that works for all o > 1 and uses at most
1.618 - w + f (o) colors for w-colorable graphs (for any function f).

3.3.2 The 5/3 Lower Bound

Lemma 3.10. If there is an {«, o, M)-schema, then there is a (2 —
schema for every e > 0.

M+, M+2+¢)-

a+2 )

Proof. The proof of this lemma is very similar to the proof of Lemma 3.7, but now we
have two separation phases instead of just one, see Figure 3.3. Let us fix an w € N,
and letw’ = | 225 |. Let S be an (', aw’ — 6,0, M)-strategy for some § = o(w').

In the initial phase, Presenter uses S inside interval [1+ §, M + 1 + §], and forces
Algorithm to use C' = aw’ — § colors. Let X denote the set of those colors.

In the separation phase, Presenter plays the separation strategy two times. First,
Presenter plays the separation strategy for w rounds in the region [0,1+ ]| pushing
to the right colors not in X. Let Y] be the set of w’ right-most intervals from this first
separation. Let ) denote the set of colors used by Algorithm to color Y;. Then, Pre-
senter plays the separation strategy for w rounds in the region [M + 1+ 3¢, M + 2 + €]

Knowing the desired target values of n and ¢, one needs to properly adjust the € value for each
application of Lemma 3.7, e.g., it is sufficient to set it to ¢/n.



42 Online Interval Coloring of Short Intervals

];Zféﬁ?aze_ o 3 3 separation phase

height: w — o’ height: w — w’

|
|
!
!
. !
separation phase
|
|
\ colors: |Z| =w — W'
|
|
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

3 separation phase | 3 | 3 separation phase |
' height: o' . height: o’ . ' height: o’ } W
' colors: V1| =w' ) . 1 colors: M =w' |

M+2+e¢€

Figure 3.3: Strategy construction in Lemma 3.10

pushing to the left colors not in X U ). Let Y5 be the set of ' left-most intervals from
this second separation. Let ), denote the set of colors used by Algorithm to color Y.

Let r be the left-most right endpoint of an interval in Y;. Let [ be the right-most left
endpoint of an interval in Y5. In the final phase Presenter introduces w — w’ times the
same interval [r, [].

The presented set of intervals is clearly w-colorable and Algorithm used at least
X[+ V] + W]+ 2] = aw' =0+ W +w' +w—w' = (2 — —5)w — o(w) many colors. The
longest interval presented has length at most M + ¢, and all intervals are contained in

[0, M + 2 + €]. Thus, we have constructed a (2 — T M+e M+2+ €)-schema. O

Corollary 3.11. There is an (a,,2n — 1 + €,2n + 1 + €)-schema, for every n € N, and every

e > 0, where
(V3-3)(v3-2)"+(V3+3)(-v3-2)"

T VB D(VB-2) (VB (VB2

Proof. The argument is similar to Corollary 3.8, but now we solve the recurrence equa-

. _ _ 1
tionay =1, api1 =2 — p——T ]

Note that, similarly to Observation 3.9, one could already use Corollary 3.11 to
get a lower bound arbitrarily close to lim,,_,o @, = V3 ~ 1.73205 for the asymptotic
competitive ratio of any online algorithm that work for all ¢ > 1. Nonetheless in
Section 3.3.4 we prove a stronger 5/2 lower bound.

Theorem 3.12. For every o > 1 there is no online algorithm for o-interval coloring with the
asymptotic competitive ratio less than 5/3.

Proof. Assume for contradiction that for some o > 1 there exists an online algorithm
for o-interval coloring with the asymptotic competitive ratio 2 — ¢, for some ¢ > 0.
By the definition of the asymptotic competitive ratio, there is an w, such that for



3.3. Lower Bounds 43

every w > wy the algorithm colors every w-colorable set of intervals using at most

g% —e+£)w = (2 - %)w colors. Observe that, for n = 1, Corollary 3.11 gives a

21+ (0 —1),3+ (0 — 1))-schema. By the definition of schema, there is an wp such
that for every w > wp there is a strategy for Presenter to present an w-colorable set
5

of intervals, of length in [1,0], and force Algorithm to use (3 — §)w colors. For w =

max(wa,wp) we reach a contradiction. O

3.3.3 The 7/4 Lower Bound

Lemma 3.13. If there is an («, o, M )-schema, then thereis a (2 —
schema for every e > 0.

2M + €,2M + 2 + ¢€)-

2a+2 +2’

Proof. The proof of this lemma is a bit more complicated than the previous ones, as
we now have two initial phases, two separation phases and a strategy branching, see
Figure 3.4 and Figure 3.5. Let us fix an w € Ny, and let o' = |[-%;|. Let S be an
(W', aw’ — 0, 0, M)-strategy for some 6 = o(w’).

In the initial phase, Presenter uses the strategy S twice: first, inside the interval
[1 +5M+1+ §], and then inside the interval [M +1+ %, 2M + 1+ %] Algorithm
uses C' = aw’ — 6 colors in each of these games. We get a set of colors &} used by
Algorithm in the first game, and a set of colors &, used by Algorithm in the second
game. Note that X; N X, might be non-empty.

In the separation phase, Presenter plays the separation strategy two times. First,
Presenter plays the separation strategy for w rounds in the region [0,1 + £| pushing to
the right colors not in &}. Let Y; be the set of w’ right-most intervals from the first sep-
aration phase, and denote ), the set of colors used by Algorithm to color Y;. Then, Pre-
senter plays the separation strategy for w rounds in the region [2M + 1 + 2, 2M + 2 + €]
pushing to the left colors not in X,. Let Y; be the set of w’ left-most mtervals from the
second separation phase, and denote ), the set of colors used by Algorithm to color
Y. Let r be the left-most right endpoint of an interval in Y3, and [ be the right-most left
endpoint of an interval in Y5.

There are two cases in the final phase. Let C; := X; U ), and analogously C; :=
Xy U Yy We have that |Cy] = [C3] = (a+ 1)’ — 0 = w — o(w).

Case 1: If |Co . C4| > 5 +2, then Presenter introduces w — ' times the same interval
[r,{]. Each interval introduced in the final phase intersects with all intervals from both
initial phases and all intervals in Y; U Y5. Thus, Algorithm is forced to use |C; U Cy| +

w—w = |Ci|+|Co N (] —I—w—w’ > w—o(w)+ Ew (2- 53
Case 2: If |C; \ Cy| < 5%, then Presenter introduces ' intervals, all of them having
endpoints [M + 1 + 5¢/ 12 l] Let () be the set of colors used by Algorlthm in this pre-
final phase. We have C; N Q = 0, and we assumed that |C; \ C;| < 5 3a05, thus we have
QN Cy| > 5o +2, and now we are in Case 1 with C; — @), see Figure 3.5.
The longest interval introduced by Presenter in both cases has length strictly less

than 2M + ¢, and the whole game is played in the region [0,2M + 2 + €|. O

Corollary 3.14. There is an (o, 3 - 2" — 4 +€,3 - 2" — 2 + €)-schema, for every n € N, and
every € > 0, where

)Jw — o(w) colors in total.

(V7= (VT=3)" + (VT +4)(-V7-3)"
(VT=1)(VT=3)"+ (VT+1)(-VT-3)"

Qy =



44 Online Interval Coloring of Short Intervals

2M + €
77777777777777777777777777777777777777777777777777 | e -
| o o |
| l . . I
| separation phase o f n.al pifase ' ' | separation phase |
I height w —w’ ! | height: o — w | ' height w —w' !
| ght: ! colors: |Z] = w — W’ P ght: !
| I | |
|
o L
oo T T VT b T e b
| separation phase : | Zgg}itﬂff@ | | Kzggﬁ tﬂf’se ! | separation phase |
! height: o’ ' colors: \ L colors: i | height: ' w W’
. — / ! . ! . ! . — / !
| colors: 1] = R Xl =aw —5 1 colors: [ = w |
Lo _. Lo Lo __. Lo
1+§ M M 1+
2M +2+¢€
Figure 3.4: Lemma 3.13, Case 1: [C3 N\ C1| > ﬁ
2M + €
77777777777777 fmmmmmmmm e m e — f oo
: | | final phase ! : :
! ] o height: w — w’ : ! ‘ !
. separation phase | L - - - - ______ . separation phase
! height: w — W T il w‘ ! height w—w' |
| | ! pre-final phase - |
! ! | height: w’ P !
win ! Lo . O
oo T T VT \ T . \
: separation phase ! : i?elitm}if ;Z,Se ! : ﬁzitliif}ffe ! : separation phase !
' height: w’ IR ‘ A ' ! height: o’ ‘ W'
1 colors: V1| =w' | o, | | ) | 1 colors: V2| =w'
| o |X1] = aw’ —§ | Al =aw’ =6 o |
Lo _. Lo oo Lo oL Lo
1+ ¢ M M 1+ ¢
2M +2+ €

Figure 3.5: Lemma 3.13, Case 2: [C2 \ C1| < 555

Proof. The argument is similar to Corollaries 3.8 and 3.11, but now we solve the recur-
rence equations ag = 1, a1 = 2 — Wlw' and My =1, M, =2M, +2,00 =1,0p41 =
2M,,. O

Note that, similarly to Observation 3.9, one could already use Corollary 3.14 to get

a lower bound arbitrarily close to lim,,_,., a;,, = 1+T\ﬁ ~ 1.82287 for the asymptotic
competitive ratio of any online algorithm that work for all ¢ > 1. Nonetheless in

Section 3.3.4 we prove a stronger 5/2 lower bound.

Theorem 3.15. For every o > 2 there is no online algorithm for o-interval coloring with the
asymptotic competitive ratio less than 7 /4.

Proof. Observe that, for o > 2and n = 1, Corollary 3.14 givesa (£,2 + (o — 2),4 + (o — 2))-
schema. Then proceed analogously to the proof of Theorem 3.12. O



3.3. Lower Bounds 45

3.34 The 5/2 Lower Bound

To prove our main negative result we need two simple combinatorial lemmas.

Lemma 3.16. Let v € [0, 1]. For every four sets X1, ..., X4, each of size k, if their intersection

is small: |(Ni_, Xi| < (1 =) - k, then their sum is large: |U;_, X;| > 222 - k.

Proof. Each element which belongs to the sum but does not belong to the intersection
can belong to at most three sets. Thus, we have

4 4 4
3-<UXi— Xi>24-<k;— ﬂX)
=1 =1 =1
and so , .
3-IUXi| =4k — | Xi| = B+7) -k
=1 =1

[
Lemma 3.17. Let v € [0,1], and Xy, ..., Xyn be a family of 4" sets, each of size k. Then, either

U Xi| = (%)nk‘,

=1
or the sequence 1,2, . ..,4" can be covered with four disjoint intervals [l1,11],. .., [ls,r4], l1 =
L, liy1 =1+ 1, ry = 4", such that for Y; = U;i:li X the intersection of Y;'s is large:

YinYonYsnYy > (1 —7)- k.

Proof. Consider n + 1 families of sets defined as follows: X .= X, for every i € [47],
and X7 .= J;*,._, &/ "" for every j € [n] and i € [4"7/], see Figure 3.6.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.6: X/ sets in Lemma 3.17

If for some i, j we have | (),._s &/| > (1 — 7)-k, then we are done. Thus, we assume
thatV,; |, 5 &' < (1 —7)-k. Let o := 5% € [1, 4]. We prove that V; ; | X/| > o'k, by
induction on j. For j = 0 the statement is obvious because V; | x| = |X;| = k = ¢°k. For
j + 1 and arbitrary i, let &’ = ¢’k. By the induction hypothesis | X}, |,...,|X}| > o'k =
k'. We may ignore some elements of those sets and assume that |4}, 4| = ... = |X],| =
k', moreover we assumed that |X], ;N...NXJ| < (1 —7)k = t—ﬂgfk = (1 —~+")k’, where
7 €10,1] and 7' > . We apply Lemma 3.16 and get | X}, ;U ... UAX}| > 3+T’Y/l<:’. Thus,
X7 > B > B = ok! = ol Tk O



46 Online Interval Coloring of Short Intervals

Finally, we are ready to show our best lower bound strategies.

Lemma 3.18. If there is an («, o, M)-schema, then for every € > 0 and for every v € (0, 1),
thereisa (3 + (1 —y)a,4"M + €,4" M + €)-schema, for some n := n(7).

Proof. Let us fixanw € N, and let ' = [%]. Let S be an (v, aw’ — 4, 0, M )-strategy
for some 0 = o(w’). Presenter repeats strategy S in the initial phase 4" times. For each
i € [4"] the i-th game is played inside interval [(i — 1)(M + %), (i — 1)(M + &) + M],
see Figure 3.7. Algorithm uses C' = aw’ — § colors in each of these games. Let X; denote
the set of C' colors used by Algorithm in the i-th game. Let X denote the set of all colors
used in the initial phase, i.e, X = {J;c ;40 A

We apply Lemma 3.17 to the family &),..., A)» and get that either the union of
these sets has at least (2£2)"C elements, or we get four disjoint consecutive subfamilies
Vi, . Qi = U;":li &;) such that the size of the intersection V; N )V, N Y5 N Y, has at
least (1 — ) - C elements.

Case 1: If the size of the union |X| is at least (1+ 1)" - C, then Presenter intro-
duces v’ intervals, all of them having endpoints [0, 4" M + €|, see Figure 3.7. Each inter-
val introduced in the final phase intersects with all intervals introduced in the initial
phase. Thus, Algorithm is forced to use at least [ X| + ' > 3((1+2)"a+ 1)w — o(w)
colors in total. Easy calculation shows that for v € (0,1), « € [1,3] and for any

n > logy, s (5/2 — ), wehave 5 + (1 + D" >34+ 11-7)a

Figure 3.7: Case 1: |X| is large

Case 2: The size of the intersection |V, N ... N Y| isatleast (1 —v)-C. LetY =1 N
Y>NYs;N Y, denote the colors that appear in all four parts of the initial phase. Presenter
introduces set Z; of v’ identical intervals covering all intervals contributing to ) and
disjoint with intervals contributing to ),, see Figure 3.8. Let Z; be the set of colors used
by Algorithm to color Z;. Then Presenter introduces set Z, of ' identical intervals
covering all intervals contributing to ), and disjoint with intervals contributing to Vs.
Let Z, be the set of colors used by Algorithm to color Z,. Clearly, | Z;| = | 22| = «’, and
ZNY = 2Z,NnY = (. Now we distinguish two subcases depending on the size of the
set Z5 \ Z;.

Case2.1: If |25 \ 24| > iw, then Presenter introduces set W of «’ identical intervals
intersecting all the intervals in Z; and Z,, and covering all the intervals contributing to
Y> and V5. Let W be the set of colors used by Algorithm to color 1. By the definition,
wehave WNY =WnN 2, = WnN 2, = (). Algorithm was forced to use |W| + | 2| +
ZoNZi|+ V> G +i+D)w+ il —y)aw—ow) = (24 i(1 - 7)a)w — o(w) colors
in total, see Figure 3.8.

Case 2.2: If |Z, \ 21| < jw, then let Z = Z; N Z, and observe that |Z| > |%].

Presenter introduces set W; of w’ identical intervals intersecting all the intervals in 77,



3.3. Lower Bounds 47

”””””””””””” wo Iw’
Zl ZQ
w ST oo, P e, TTOIIIIIIZZIZZZZIZIIZIN
/
Wi Vs Vs N2 Iw
) A" M + € B
Figure 3.8: Case 2.1: || is large and |25 \ Z1| > jw
w’ W,
”””””” Wy ]
Z Zy
w ST oo, P e, TTOIIIIIIZZIZZZZIZIIZIN
/
Nz Vo Nz N2 Iw

Figure 3.9: Case 2.2: |Y| is large and |25 \ 2| < jw

and covering all the intervals contributing to )». Then, presenter introduces set W,
of ' identical intervals, intersecting all the intervals in W; and Z,, and covering all
the intervals contributing to )5;. Let W be the set of colors used by Algorithm to color
intervals in W; UW,. We have that [W| = 2w/, and WNY = WnN Z = (. Algorithm was
forced touse | W|+|Z|+ |V = (1+ Hw+1(1 - y)aw—ow) = (2 +1(1 —7)a)w—o(w)
colors in total, see Figure 3.9. O

Corollary 3.19. There is an an (o, 4™/ + €, 4770 + €)-schema, for every n € N, every
€ > 0, and every y € (0, 1), where

an:; 1 (3—27)_(1;7)"’ f(v):{log(g——v)]

1++7 2(1+7) log (14 2)

Proof. The argument is similar to Corollaries 3.8, 3.11, and 3.14, but now we solve the
recurrence equations ay = 1, a1 = % + %(1 — ¥)ay, for competitive ratio, and M, = 1,
M, = 49M,, 5, = M, for region and interval lengths. O

Theorem 3.20. For every ¢ > 0 there is 0 > 1 such that there is no online algorithm for
o-interval coloring with the asymptotic competitive ratio 5/2 — e.

Proof. Assume for contradiction that, for some ¢ > 0, there are (5/2 — ¢)-competitive
algorithms for every o > 1. Setting  small enough and n large enough, Corollary 3.19

gives us a <§ — 9,0, a>-schema, for some value of o. This means, there is wp such that
for every w > wp there exists an (w, (3 — £)w, 0, 0)-strategy. On the other hand, for
the assumed o-interval coloring algorithm, there exists w4 such that for every w > wy
the algorithm uses at most (5 — 2°)w colors for every w-colorable set of intervals. For

w = max(wa,wp) we reach a contradiction. O



48 Online Interval Coloring of Short Intervals

3.4 Open Problems

There are still large gaps between the best known lower and upper bounds for the
optimal competitive ratios for online o-interval coloring problems, see Figure 3.10. It
would be interesting to close the gap, even for a single specific . For example, for
o = 3/2 the optimal online algorithm has the competitive ratio somewhere between
5/3 and 5/2.

ratio
Thm 3.2 Kierstead-Trotter [26]
.
Epstein-Levy [12] -1
5 B -
2 : T L
2+ “ I
s S &
3 :
3 %
5T ]
%/—/H/—/
Thm 3.12 Thm 3.15 Thm 3.20
o
| . _____ |
[ | [
1 2 00

Figure 3.10: The state of art bounds on the asymptotic competitive ratio as a function of o.

Finally, let us conjecture that the lower bound of Theorem 3.20 is tight.

Conjecture 3.21. There is a 5/2-competitive online algorithm for o-interval coloring, for every
o> 1.



4
FirstFit in Online Interval Coloring of Short Intervals
with restricted Bandwidths

4.1 Introduction

The FirstFit algorithm is the simplest and the most natural greedy algorithm for any
graph coloring problem. When a new vertex is presented, FirstFit colors it with the
smallest positive integer that does not violate the problem-specific constraints. It is
quite easy to see that FirstFit is very inefficient on the family of bipartite graphs (or
even on forests). One can easily produce a bipartite graph on 2n vertices on which
FirstFit uses n colors. However, in the class of interval graphs, FirstFit achieve a con-
stant competitive ratio. The FirstFit algorithm has been intensively studied in the case
of interval graphs [7, 23, 24, 25, 31, 33]. Narayanaswamy and Babu [31] proved that
the competitive ratio of the FirstFit algorithm in this class is at most 8, while Kierstead
et al. [25] showed a lower bound of 5. Unfortunately, FirstFit performs arbitrarily bad
when intervals have associated bandwidths [2, 34].

In this chapter we show a series of bounds on the competitive ratio of the FirstFit
algorithm in the online o-interval coloring with [«, ]-bandwidths under some reason-
able assumptions about the lengths and bandwidths of presented intervals.

We decide to include the interval representation in the input, instead of presenting
the mere graph. That’s because the FirstFit algorithm works on the graph and it’s
representation in the same way, and this assumption makes some arguments easier.
Moreover, wlog. we assume that all intervals introduced by Presenter have lengths at
least 1.

4.1.1 Owur Results

In Section 4.2 we analyze the case in which all bandwidths are allowed, i.e. « = 0 and
$ = 1. FirstFit does not have a constant competitive ratio in this case [2, 34], but it turns
out that this ratio is bounded by a function of . In fact, we prove that in this case both
absolute and asymptotic competitive ratios of the FirstFit algorithm are o + o(0).

In Section 4.3 we prove that if Presenter cannot use arbitrarily small or big band-
widths i.e. « > 0 or § < 1, then the linear in terms of ¢ lower bound is not valid
anymore. We show that in this case the competitive ratio depends only on o and £.

Sections 4.4 and 4.5 contain results in the case where ¢ = 1, i.e. we deal with the
online unit interval coloring with bandwidths. In Section 4.4, we investigate the case in
which all bandwidths are available. In that case we prove that the asymptotic competi-

49



50 FirstFit in Online Interval Coloring

tive ratio of the FirstFit algorithm is between 3.38 and 5, while the absolute competitive
ratio is between 3.38 and 6.

In Section 4.5 we focus on the competitive ratio in the case where all small band-
widths are available but Presenter cannot use big bandwidths. Considering such a
scenario is a common case. For instance in the bin-packing problem there is a series of
papers that deal with the r-parameterized bin-packing, i.e. a bin-packing problem in
which all items are not greater than . The online interval coloring with bandwidths is
a generalization of the bin-packing problem. Hence, we investigate that case too, and
present quite tight analysis especially for small values of /3.

Definitions
For an interval I = [I, r] we denote:
e length(I) the length of I, i.e. length(I) =1 —1,
e w([) the bandwidth associated with I, and
e col(I) the color assigned by the FirstFit algorithm to /.

For a color v and a point p € R we denote w; () the sum of bandwidths of all intervals
that are colored with 7 and contain p. For a point p € R we denote w;, the sum of
bandwidths of all intervals that contain p, i.e. w; = > w; (7). We also denote w* the
maximum value of w; over all points p. Clearly, at least [w*] colors are required to

properly color the input graph.

4.2 FirstFit Online o-Interval Coloring with Bandwidths.
We start with a simple observation about the FirstFit algorithm.
Observation 4.1. If w* < 1, then FirstFit is optimal.

Clearly, each interval gets the same color and the proper coloring constraint is sat-
isfied. Thus, in the rest of this chapter we assume that w* > 1.

The following construction, shows that FirstFit performs arbitrarily bad. We mod-
ify the construction presented by Adamy and Erlebach [2] in such a way that it works
with intervals with lengths in [1, o] and gives an asymptotic lower bound, which is a
linear function in terms of o.

Theorem 4.2. For every o > 1, both absolute and asymptotic competitive ratios of the FirstFit
algorithm in the online o-interval coloring with bandwidths are at least [o] + 1.

Proof. Lete € (0,3), k € Ny, n:=[o] +1and é := %}W which is positive for every
o = 1. The strategy for Presenter consists of kn phases. In the i-th phase Presenter
introduces two intervals: a long interval I; = [0, o] with bandwidth ¢* and a short one
Ji=[1+)G—1)—1,(14)(j —1)] with bandwidth 1 — ¢ where i = an + j for some

j € [n], see Figure 4.1.



4.2. FirstFit Online o-Interval Coloring with Bandwidths. 51

ag
Iyt { €
Iot | €2
It { €3
[kn} i Ekn
Jit | Jat {  J3t i Ipb—
I+t | Jn42f { Jrtgt < Jo——
Jq+1} { Jq+ } | Jq+a} | Jk'n}—{
—
1 é

Figure 4.1: A strategy for Presenter in the online o-interval coloring with bandwidths. In order to
simplify indices we put ¢ := (k — 1)n.

Observe that each long interval intersects all short intervals. It is easy to see that the
right endpoint of the leftmost short interval is 0 and the left endpoint of the rightmost
short interval is (1 +d)(n — 1) — 1 = 0.

We induct on ¢ to show that both intervals I; and J; are colored with a color 7. It is
easy to check that for all j < i there is a point p € [0, o] such that wy(j) = 1, thus the
long interval I; cannot get any color j < i. Moreover, there is no interval colored with i
yet, so the interval I; gets a color i. The interval J; with a bandwidth 1 — €’ intersects all
long intervals Iy, ..., I;_; with bandwidths ¢, ..., €' respectively. Because for every
1 <j<iwehavel — ¢ + ¢ > 1, the interval J; cannot get any color j < i, but it can
be colored with i.

Now we show that the presented set of intervals can be colored offline with £ + 1
colors. We color all short intervals using k colors by coloring intervals J,,,; with a
color a for every a and j. Since € + €2 + ... + ¢ < ;< < 1for € < 3, we can color all
long intervals with a single color. Therefore, we colored all intervals using k + 1 colors
in total.

For fixed & € N, the presented strategy ensures that the competitive ratio of the
FirstFit algorithm is at least “%. Taking large values of k we can get as close to n =

k41
o| + 1 as we want to. ]
[o]

We just proved that the competitive ratio of the FirstFit algorithm in the online
o-interval coloring with bandwidths dominates the linear growth of . In the next
few lemmas and theorems we show a matching upper bound of the form ¢ + o(c) on
the competitive ratio of the FirstFit algorithm in this problem. At first, we introduce
a notion of the accumulation points — a characteristic set of points associated with an
interval that helps in the analysis of the FirstFit algorithm.

Definition 4.3. For an interval I = [l,r|, aset of pointspy = l,ps =1+1,...,p,=1+q—1,
where q := [r — l| + 1 is called a set of accumulation points of I, see Figure 4.2.

First, we prove a quite easy and natural lemma, which then will be used in more
complicated constructions to obtain better results.

Observation 4.4. If FirstFit colored an interval I with a color ¢, then ¢ < L_i ( I)J + 1, where
S'is the sum of bandwidths of all intervals that intersect I.



52 FirstFit in Online Interval Coloring

p1 p2 p3 Pg—2 Pg-1 Pq

length(I)
Figure 4.2: Accumulation points for an interval 1.

Proof. If for some color j the sum of bandwidths of all intervals that I intersects and
are colored with j does not exceed 1 — w(I ) then I may be colored with j. Thus, the

color of an interval I is not greater than { ol )J + 1. O

Lemma 4.5. If FirstFit colored an interval I with a color ¢, then ¢ < {%J + 1.

Proof. If all intervals have length at least 1, then any interval I’ which intersects I has
to contain at least one accumulation point of /. Moreover, at any accumulation point
the sum of bandwidths of all intervals that contain this point cannot exceed w*. Thus,
Observation 4.4 for S = ([length(I)] + 1)w* leads to the desired result. O

Now we improve the upper bound of Lemma 4.5 to the one that does not depend
on the bandwidth associated with an interval.

Lemma 4.6. If all intervals have lengths in [1, ] then for every integer k > 2, FirstFit colors
an interval I with a color not greater than (kL )+ (k — 1)([length(I)] + 1))OPT +
2.

Proof. If all intervals have bandwidths greater than 1, then at most | (k — 1)w*] different
intervals may contain a given accumulation point of I. Interval [ has [length(I)]+1 ac-
cumulation points. Thus, I can intersect at most ([length(I)] + 1)|(k — 1)w*| intervals
in total, and we are done in this case.

In case that light intervals exist we carefully pick one of them. First, put n :=
col(I) =1, q := [length(I)] + 1 and let Z;, for i € [n], be the set of all neighbors of I that
are colored with a color i. For each set Z; choose an interval I; € Z; with the smallest
bandwidth to be the representative of this set. If for some set Z; there are many candi-
dates with the same bandwidth, then pick any of them. We assumed that col(/) = n+1,
so all sets Z; are not empty and such representatives exist. Let I, be a representative
with the highest color and bandwidth not greater than 1, i.e. Vs, : w(l;) > 1 and
w(l,) < 1. Call representatives with colors higher than a heavy representatives.

For each heavy representative define its characteristic point as the leftmost accumu-
lation point of I that this representative contains. For ¢ € [g¢], let z; be the number of
heavy representatives for whom p; is a characteristic point. Clearly, > | z; = n—a and
from the definition a = col(1,), which implies that col(I) = col(1,) + >_{_, z; + 1. More-
over, if there are z; intervals containing p; and each of them has bandwidth strictly

greater than 1, then the proper coloring requires at least | 2] colors. Thus, the mini-

mal number of colors required in the proper coloring is at least [max {w*, 2=, ..., =% }].



4.2. FirstFit Online o-Interval Coloring with Bandwidths. 53

Lemma 4.5 implies that col(1,) < V”engfﬁg‘(’}l; 1)“’*J + 1. Thus,

col(I) < %([oﬂ + 1)w* —i—ixi +2

=1

Case1:V, : w* >
Hence, col(I) < 7 (

“i-, which means that V; : z; < (k — 1)w*

ol + Dw*+q(k — 1)w*+2 and we are done, because OPT > [w*].
Case 2: 3; : ””1 > w*. Take ¢ with the biggest z;.

In this case we have col(I) < Z5([o] + 1)7%5 + q(k — 1)72

done, because OPT > [;2:]. O

Using Lemma 4.6, one can easily prove that both absolute and asymptotic compet-
itive ratios of the FirstFit algorithm in the online o-interval coloring with bandwidths
are linear functions in terms of o.

Corollary 4.7. If all intervals have lengths in [1, 0|, then the maximum color used by FirstFit
is bounded from above by 3([o | + 1)OPT + 2.

Proof. Lemma 4.6 for length([) = ayields abound col(I) < (5 +k —1)([o] + 1)OPT+
2. A function f(k) = %5 +k—1= " ’“1“ minimizes for k¥ = 2 with f(2) = 3, which
gives the desired result O

Thus, for every o > 1, the asymptotic competitive ratio of the FirstFit algorithm in
the online o-interval coloring with bandwidths is at most 3[o | + 3, while the absolute
competitive ratio is at most 3[o| + 4 (take OPT = 2). Although, this is not the best
we can do. In Theorem 4.9 we prove an upper bound with a multiplicative constant 1
instead of 3, which matches the lower bound presented in Theorem 4.2. Before we state
that theorem, we make an obvious but useful observation about the FirstFit behavior.

Observation 4.8. Let Z = [I4, ..., 1,,] be a sequence of intervals originally colored by FirstFit
by the colors colz(1;), and J = [I;,, ..., 1; | be a subsequence of T after removing all the I;’s
with colz(1;) = 1. Then, while coloring the intervals from [J, FirstFit assigns cols(I;) =
colr(I;) — 1.

Now we are ready to state our best upper bound on the competitive ratio of the
FirstFit algorithm in the online o-interval coloring with bandwidths.

Theorem 4.9. For every o > 1, the maximal color used by FirstFit in the online o-interval
coloring with bandwidths is bounded from above by (o + 50*% + 30'/% + —Zz + 10)OPT +4.

Proof. Let x € (1,0) be some constant determined later. Lemma 4.6 implies that for
every integer k > 2, the maximal color used by FirstFit on an interval shorter than z
does not exceed C(z) := (2 ([o] + 1) + (k — 1)([z] 4+ 1))OPT + 2. Let Zy;,, be the set
of intervals colored by FirstFit with colors higher than C'(z). Applying Observation 4.8
C(x) times, we get that, if one use FirstFit to color all intervals from the set Z,;,;, with
the same order as in the original sequence, then all colors are shifted by C'(z) in respect

to the original ones.



54 FirstFit in Online Interval Coloring

Clearly, all intervals in the set Zj,,, have lengths in [z,0]. Hence, one can see
this as an instance of the online (Z)-interval coloring with bandwidths, by rescal-
ing all intervals in 7y, by the factor x. Corollary 4.7 implies now that the maximal
color that FirstFit uses when it is applied to the set Z,;,, does not exceed Chgp(x) :=
3([2] +1)OPT + 2. This combined with the fact that colors of those intervals in the
original sequence are shifted by C(z) implies that the maximal color that FirstFit uses
on the original instance is at most C(x) + Ch;gn(x). Thus, the color of every interval is
bounded from above by

(kﬁ1(0+2)—i—(k—1)(3:+2)+3<%—|—2>)OPT+4

and this bound holds for every integer k > 2, and every z € (1,0). Take k := [o'/3] +1,

which is not less than 2 for every o > 1, and z = ¢'/3, which clearly belongs to (1,0)
for every o > 1. This leads to the following upper bound

((1 + ﬁ) (0 +2)+ [¢"*] (a7 +2) +3(# +2>)OPT+4.

Since [0'/*] < 0'/? + 1 and ﬁ < 5, the above expression reduces to

2
(0 + 5023 4 3513 & 7 + 10) OPT + 4,
g

and we are done. OJ

4.3 FirstFit Online o-Interval Coloring with [a, §]-Bandwidths.

Theorems 4.2 and 4.9 provide a tight analysis of the FirstFit algorithm in the case where
all intervals have associated bandwidths from [0, 1]. Although, the construction in
Theorem 4.2 used both arbitrarily small and arbitrarily big bandwidths in order to give
a linear in terms of o lower bound. In this section we investigate the online o-interval
coloring with bandwidths, in which all intervals have bandwidths in |o, 5] with 0 < «
or < 1. In fact in this setting the linear in terms of o lower bound does not apply
anymore. The destruction of this linear bound can be easily seen for a > 1.

Observation 4.10. If a > 1, then any two intersecting intervals have to get different colors,
and the problem reduces to the online o-interval coloring problem.

Next we recall that for 3 < 1 Pemmaraju et al. [33] proved an upper bound of form
% while analyzing the Adamy and Erlebach algorithm [2].

Theorem 4.11 (Pemmaraju et al. [33]). For any set T of intervals whose maximum bandwidth
is § € (0,1), the FirstFit algorithm uses at most 1% - OPT(Z) + 1 colors.

A careful analysis of the original proof of Theorem 4.11 allows us to almost literally
repeat their arguments to get the following.

Theorem 4.12. For any set T of intervals whose minimum bandwidth is o € (0, 1), the FirstFit
algorithm uses at most - OPT(Z) + 1 colors.



4.3. FirstFit Online o-Interval Coloring with |, §]-Bandwidths. 55

Indeed, in the proof of Theorem 4.11 authors combined the column construction
method with the following observation on the FirstFit algorithm.

Observation 4.13 (Pemmaraju et al. [33]). If all intervals have bandwidths at most 3 €
(0,1) and an interval I is colored with a color i > 1, then for any color j < i, there is a point
p € I such that w;(j) > 1 - p.

Proof. Clearly if there is no such point, then since the bandwidth of I is at most f, it
can be colored with a smaller color contradicting the fact that FirstFit always uses the
smallest possible color. O

Equally easily we can prove the next observation.

Observation 4.14. If all intervals have bandwidths at least o € (0,1) and an interval I is
colored with a color i > 1, then for any color j < i, there is a point p € I such that wy (j) = a.

Proof. Interval I is colored with a color 4, so I intersects at least one interval colored
with a color j for every j < i. Since each interval has bandwidth at least o, we are
done. ]

Coming back to the argument for Theorem 4.11 we note that replacing Lemma 4.13
by Lemma 4.14, and changing RULE 1 in the column construction method to assign the
symbol R when the density of a given color in a given elementary interval is at least
a/2 instead of (1 — () /2, see [33] for details, we get the required upper bound.

Theorems 4.11 and 4.12 together provide an upper bound on the competitive ra-
tio of the FirstFit algorithm of the form m A slight modification of the strat-
egy presented in Theorem 4.2 can be used to show a lower bound which is roughly

1

max{a,1-5}

Theorem 4.15. For every o > 1, o € (0,%), and 8 € (3,1), both absolute and asymp-
totic competitive ratios of the FirstFit algorithm in the online o-interval coloring with [« [3]-
bandwidths are at least %, where = max {«, 1 — f}.

Proof. As in the proof of Theorem 4.2 we present the intervals Iy, ..., Iy, J1,. .., Jin
in the very same order. Although, we need to make sure that the bandwidths of the
I;’s and J;’s fall into the interval [a, §]. This forces some additional restrictions so that
¢ < min{l —a, 3} — p, and the bandwidth € of I; is replaced by p + ¢ while the
bandwidth 1 — € of J; is replaced by 1 — p — €".

Observe that t+ e < fand 1 — p—€e>1—min{l — a, f} > «. Thus, all presented
intervals have bandwidths greater than o and less than 5. So now, as in the original
proof, FirstFit uses kn colors. Although, we are not able to color the instance with
at most k + 1 colors. Instead, we may use at most k colors for short intervals and at
most # for long ones (take small enough ¢€). Thus, the competitive ratio is at least
([o1+1)((1/p)=1) -

[o]+[1/n]

This lower bound becomes a constant as o goes to the infinity, what is a signifi-
cant difference between the case where all bandwidths are allowed and the case where



56 FirstFit in Online Interval Coloring

Presenter cannot use arbitrarily small or arbitrarily big bandwidths.

(1 +0([3) 1) ]

1

lim

SR

It is easy to check that the function f(z) = % is a non-decreasing function of
x since L f(z) = (’;—;i)Q > 0. Thus we have the following corollary.

Corollary 4.16. For every o € (0, 3), and 3 € (3,1), both absolute and asymptotic compet-
itive ratios of the FirstFit algorithm in the online interval coloring with [, ]-bandwidths are

1
at l@ﬂst {mJ .

4.4 FirstFit Online Unit Interval Coloring with Bandwidths.

In this section we analyze the performance of the FirstFit algorithm in the game played
on the unit interval graph (i.e. with ¢ = 1). Corollary 4.7 and the discussion after it
yield an absolute upper bound of 7 and asymptotic upper bound of 6 on the compet-
itive ratio of the FirstFit algorithm in this case. In Theorem 4.18 we show that in fact
asymptotic bound can be improved to 5. To prove this, we need an obvious observa-
tion.

Observation 4.17. Let 7 = |4, .. ., I,,| be a sequence of intervals, originally colored by First-
Fit with the colors colz(1;) < k for some k. For each color i let Z; be the set of all intervals
that FirstFit colored with i. Then for each modification of Z to J = [I.,...,Zy] we have
col 7(1;) = colz(1;) independently of the order of presentation inside the Z;’s.

Theorem 4.18. The maximal color used by the FirstFit algorithm in the online unit interval
coloring with bandwidths is bounded from above by 50 PT + 2.

Proof. If all intervals have bandwidths greater than 3, then the online unit interval
coloring with bandwidths reduces to the online unit interval coloring problem, and in
that case we know that FirstFit is 2-competitive. Thus, we assume that there is at least
one interval with bandwidth at most 3.

Our proof here is modeled after the proof of Lemma 4.6. Analogously to that
lemma, we split all neighbors of I into color classes, and denote I; the representative of
the color class 7. Let I, be a representative with the highest color and bandwidth not
greater than . Representatives with colors higher than a call heavy representatives. Let
x, be the number of heavy representatives that intersect the left endpoint of 7, and z
be the number of heavy representatives that intersect only right endpoint of / (prevent
double counting). Clearly, col(I) = col(1,) + x1 + zr + 1.

Without loss of generality, assume that I, intersects the left endpoint of I. Accord-
ing to Observation 4.17, we may safely assume that intervals are presented in the order
of their colors. Thus, when the interval I, is presented, there are no heavy representa-
tives yet, and so the sum of bandwidths of all intervals that /, intersects is not greater
than 2w* — Lz;. That is because each heavy representative that intersects the left end-

2
point of I intersects one endpoint of /,, the bandwidth of a heavy representative is at



4.5. FirstFit Online Unit Interval Coloring with [0, 5]-Bandwidths. 57

least 1, and the sum of bandwidths at any point cannot exceed w*. The bandwidth of
the interval 1, is at most 5. Hence, Observation 4.4 implies that col(I,) < [4w* — 21| +1,
and so col(I) < 4w* + xp + 2.

There are z;, intervals intersecting the left endpoint of / and each of them has band-
width strictly greater than 1. Thus, one has to use at least =, colors to properly color
the presented set of intervals. Analogous argument applies to the right endpoint of
I. Hence, the minimal number of colors required in the proper coloring is at least
max {[w*|, xp, TR}

Case 1: [w*| > max{xp,zr} = col(]) < 4w*+axp+2< (4 +1)|w*| +2 < 5OPT +2.

Case 2: xy, > max {[w*],zr} = col(I) < dw* +xp +2 < (44 1)z, +2 < HOPT + 2.

Case 3: xp > max {[w*], 21} = col(]) < dw*+ap+2 < (4 + 1)zr+2 < 50PT+2. O

For a full analysis of the FirstFit algorithm on unit intervals with bandwidths from
[0, 1] we need also a lower bound. This bound will follow directly from our general
result (presented in Section 4.5) for bandwidths in [0, 3]. Using Theorem 4.32 we get
the following corollary.

Corollary 4.19. Both absolute and asymptotic competitive ratios of the FirstFit algorithm in
the online unit interval coloring with bandwidths are at least 3.38.

Corollary 4.20. FirstFit is not an optimal algorithm for the online unit interval coloring with
bandwidth.

Proof. Aswe mentioned in Chapter 2, Epstein and Levy [12] designed a 3.178-competitive
Algorithm for the online unit interval coloring with bandwidths. O

4.5 FirstFit Online Unit Interval Coloring with [0, 5]-Bandwidths.

Our construction for the lower bound on the competitive ratio of the FirstFit algorithm
in the online unit interval coloring with [0, 5]-bandwidths is a combination of two well
know results: an interval construction presented by Epstein and Levy [13], and a lower
bound for the online bin-packing problem presented by Johnson et al. [21, 20]. In fact,
we prove that the lower bound in the online unit interval coloring with bandwidths
is twice as big as the lower bound in the online bin-packing. Below, we present a
modification of the construction from [13]. For a positive integer n and positive even
integer m, both to be determined later, consider an infinite set of intervals Z,,, =
{l;; :i € [nm],j € Z} where I, ; = [P(i, ), P(i, j) + 1], with

o 25 — - when i is odd
P, j) = { ’

nm’

2j — == + 1, when i is even,

see Figure 4.3. We call the set L; = {I,; : j € Z} the i-th layer of Z,,,,. We claim that Z,,,
has the following properties.

Observation 4.21. The size of the maximum clique in Ly U ... U Lg;_4 15 i.

Proof. Ttis easy to check that the point 2j——- belongs to the intervals I ;, I3 j, . . . , Ioi—1;.
Thus, there is a clique of size i. Now assume that there is a point p contained in 7 + 1



58 FirstFit in Online Interval Coloring

i=1 P P P P P
i=2 P P P P

i=3 - [ E— P [ E— P
i=4 P — P P

i=5

Figure 4.3: A part of the infinite set of intervals Z,,,,.

intervals. Consider the set of intervals from two consecutive layers Lo, and Loj4. It is
easy to check that the only regions where those intervals form a clique of size 2 are of
the form [2j — 2t 25 — 2k ] Those regions are disjoint for &’ # k, and so the maxi-
mum clique formed by all’ layers except the first one is of size at most i. Hence, p has to
lie in some interval from the first layer. But, intervals of the form [2j — 251 25 — 2k ]
have an empty intersection with L;. Thus, the maximum clique in this case is i (you
can pick at most one interval from layers Ly, and L,;1;1 and one interval from the first

layer). O

Observation 4.22. Each interval I ; intersects at least one interval from each layer L, up to
Li—l-

Proof. It is easy to see that if i is odd, then the left endpoint of the interval /; ; intersect
intervals I5;_1,14;-1,...,1i—1,;-1, while the right endpoint of I, ; intersects intervals
LI j,Is;,...,1,_5 ;. Analogously, if i is even, then the left endpoint of the interval I, ;
intersect intervals I, ;, I3 ;, ..., I;_1 ;, while the right endpoint of I, ; intersects intervals
]27]‘,]47]‘,...,11'_27]‘. L]

Observation 4.23. Ii,j N Ii’j’ 7é 1] lfﬂnd only l.fIH_QJ' N Ii’+2,j’ # 0.

Proof. Without loss of generality, assume that the left endpoint of I, ; is to the left of the
left endpoint of I; ;.. Thus, if those intervals intersect, then

P(i,j) < P>, j") < P(i,j) +1

o 2 g . 2 .. 2
P(Zvj)_%gp(lla],)_%<P<27J>+1_%

Pli+2,7) <P +2,7)<Pi+2,7)+1

Hence, the intersection of [, ; and I;;15 ;- is nonempty. The proof of the second impli-
cation goes the same way. [

Now, we describe our strategy for Presenter against the FirstFit algorithm in the
online unit interval coloring with [0, 5]-bandwidths. The strategy consists of n phases
and each phase consists of m subphases Letk,...,k,bea weakly decreasing sequence
of natural numbers satisfying > ;" | = 7 <1,and put K =[], ki. The ks are going to
control the bandwidths of presented intervals. Now, let € be the smaller of the numbers

(1 — YT il> and m In the a-th phase Presenter introduces intervals with

a bandwidth w, = 5 + ¢ each. For the b-th subphase of the a-th phase let ij :=



4.5. FirstFit Online Unit Interval Coloring with [0, 5]-Bandwidths. 59

(a—1)m + band j§ := |4(if —1)|. Presenter in this subphase introduces nm — if + 1
cliques, each containing exactly K intervals with the same endpoints. The first clique
consists of K intervals Lig ja, the second one contains K intervals Lo jota and so on up to

the last clique with K intervals e jo | nm—is, see Figure 4.4. This finishes the description

of our strategy for given integers n, m and a sequence ky, . .., k.
ab_ .
T o — — o —
T — — — — —— —
m — — — — —
— —d —d —d —
1 — — — —
9 T — — —
m —d —d —
— — —
1 — —
n — —
m

Figure 4.4: Intervals presented in subphases.

Note that, each interval / can be uniquely determined by the tuple (a,b,,j, k)
where the pair (a,b) € [n] x [m] identifies the subphase I was introduced in, (i, j)
determines the endpoints of /, and k € [K] distinguishes between intervals belonging
to the same clique. Actually, the coordinate i is redundant, since i = (¢ — 1)m+0. Thus,
we use the tuples (a, b, j, k) instead.

Now we count colors used by FirstFit to color the presented set of intervals. We
start with an obvious remark on the behavior of FirstFit on intervals from the same
subphase.

Remark 4.24. All cliques introduced in the same subphase are colored by FirstFit in the very
same way.

Due to Remark 4.24 we may restrict to only one clique in each subphase.

Observation 4.25. In each subphase of the a-th phase FirstFit uses only new colors, exactly

% of them, and in each clique each such color covers intervals with total bandwidth ka + kqe.

Proof. Looking at the intervals from a single clique of the very first subphase, we see
that FirstFit can (and actually has to) use kﬁl colors. Moreover, each of these colors has

to be used exactly k; times, covering kjw; = ﬁ + kye total bandwidth. A slightly
more careful analysis is needed to observe that the colors used in the first ¢ subphases
cannot be used anymore. This is because all intervals introduced later intersect at

least one clique from all previous subphases due to Observation 4.22; the sequence of

bandwidths wy, . .., w, is not decreasing; and by induction we know that each already
used color covers k,w, = kfj‘H + k,e total bandwidth, where a is the number of phase

in which this particular color was introduced. O



60 FirstFit in Online Interval Coloring

n 1

Summing up Observations 4.24 and 4.25 we know that FirstFit used mK /", ;-
colors in total. In order to estimate the offline optimum, we color the intervals by
(3m + 1)K colors. First, we consider the set Z* of intervals represented by tuples
(1,b,7,1) for all j and b € [m]. Due to Observation 4.21, the maximum clique formed
by these intervals is %m + 1. Thus, ignoring bandwidths, all intervals from Z* can be
colored offline by $m + 1 colors. Let Cy,; be the color of the interval represented by
(1,0, 7, 1) in that coloring. Now, we expand this particular coloring to some proper col-
oring of the presented intervals (with bandwidths). We color the interval represented

1

by the tuple (a,b, j, k) by (C;, k). Clearly, this coloring uses (3m + 1)K colors. In

Observation 4.27 we actually prove that our coloring is a proper c?oloring.
Observation 4.26. If two intervals from the same phase have the same color, then they are
disjoint.

Proof. Assume to the contrary that intervals /; and I, were presented in the same
phase, I, N I, # 0, I, was colored by (C}, ;,, k), and I, was colored by (C, ;,, k), such
that C, ;, = (4, j,- Both intervals were presented in the a-th phase for some a € [n], so
they are of the form I} = I(4_1)mts, 5, and Ir = [(g_1)m+b,,j,- We assumed that m is an
even integer, so after applying the Observation 4.23, (a — 1)m times, we conclude that
intervals I, ;, and I, j, have a nonempty intersection. Hence, the coloring of intervals
from the set Z* is not a proper coloring and we reached a contradiction. O

Observation 4.27. For every point p and every color c, the sum of bandwidths of intervals
containing p and colored by ¢ does not exceed 1.

Proof. Let T be the set of intervals containing p and are colored by c¢. Assume to the
contrary, that the sum of bandwidths of these intervals exceed 1. All intervals in the

i-th phase have bandwidths w; = %ﬂ + ¢, where € < %(1 -y, ﬁ) If the set

7 contains at most one interval from each phase, then the sum of bandwidths of all

intervals in Z is not greater than > ;" | (ﬁ + e> = Y. 745 + ne < 1. Thus, the set

7 contains at least two intervals that were presented in the same phase. Both of them
contain p, so we have two intersecting intervals from the same phase colored by the
same color. Thus, Observation 4.26 leads to a contradiction. ]

The presented coloring is a proper coloring, and the above construction implies a
lower bound on the competitive ratio of form

mEY 5w 2m =1
(%m—i—l)K—m—i-Qi:l k;

We assumed that m is some positive even integer. Hence, taking large values of m
brings us arbitrarily close to
n
1
2\ " =

In fact, is is enough to take m > 2(15_6) to prove a bound of form (1—4)2> ", ki

Now, we use the presented construction to prove several lower bounds on the com-
petitive ratio of the FirstFit algorithm in the online unit interval coloring with [0, J]-
bandwidths. In order to do that, we present a series of sequences that satisfy assump-
tions of the presented construction.




4.5. FirstFit Online Unit Interval Coloring with [0, 5]-Bandwidths. 61

We are mostly interested in a sequence that was widely applied in many papers on
the online bin packing problem [5, 15, 29, 41, 42]. This sequence, mostly called a Saltzer
sequence, was introduced by Sylvester in 1880 [38]. Below we present a definition of
this sequence in a parametric case.

Definition 4.28 (Sylvester sequence). For a positive integer r a sequence my ., Mo, . . ., My
is defined as follows:

e my,=r+1
® My, =1 +2

® My, = mj_17r(mj_17r — 1) + 1f01"j S {3, R ,TL}

1 1
1=2 mg r o mk+1,7'71'
Proof. By induction on k. For £k = 1 we have L=1- =
m—i—m 1—T+—1+T == =1- m =1- Assume that this observat1on is true
k+1 1 1 1 _1_ 1 —1_ 1 n
=1 my r mk«kl,r*l Meg41,r mk+1’r(mk+1,r—1) mk+2,r71.

We define a sequence of parameters for our lower bound construction as follows.
For positive integers r and n, let &y, ..., k,4,—1, be an (n + r — 1)-element sequence
such that:

® ki, =my_i41,—1forie{l,...,n—1}
© ki, =my, —1forie{n,...,n+r—1}

Example 4.30. For r = 3 and n = 5, the Sylvester sequence is [4,5,21,421,176821], while
the k;, sequence is [176820, 420, 20, 4, 3, 3, 3].

Observation 4.31. The sequence k; . satisfies > ;. <L

i= 1k+1

Proof. k;, is an (n’ +r — 1)-element sequence based on an n’-element Sylvester se-

1
quence From the definition we have >0, ;=5 = Y, r— + 71— =

i=1 Mp! —it1,r mi,r mi,r

/

> izy m—- Observation 4.29 implies that the last expression is equal to 1 — #,
which is less than 1. O

Observation 4.31 implies that we can use sequences k;, as an input for the lower
bound construction. Hence, we have a following theorem.

Theorem 4.32. For every positive integer v > 2 and every 0 < § < 1 — %, both absolute and
asymptotic competitive ratios of the FirstFit algorithm in the online unit interval coloring with

1 4 1 1
[0, L + 6)-bandwidths are at least 2(1 +tma Tt oo T (T+1)(T+2)((r+1)(r+2 o+ o(L ))

Proof. Use the lower bound construction with a sequence k; ,, but in order not to violate
bandwidths constraint use € := min {¢, ¢ }. O



62 FirstFit in Online Interval Coloring

| r| ratio|| r| ratio |
1| 3.3809 6 | 2.3220
2 | 2.8461 71 2.2781
3| 2.6047 8 | 2.2446
4 | 2.4688 9| 2.2183
5123820 || 10 | 2.1970

Table 4.1: Lower bounds on the competitive ratio of the FirstFit algorithm obtained with a Theorem
4.32.

Table 4.1 shows a list of lower bounds that are a consequence of Theorem 4.32.

Johnson et al. [21] presented an upper bound on the competitive ratio of the FirstFit
algorithm in the online bin-packing problem in which all items are not greater than
L for some integer m. They proved that this ratio is bounded from above by 1 + .
Unfortunately, their argument does not work in the case of the online unit interval
coloring with bandwidth (there is no point p in which all intervals intersect). Lemma
4.5 implies that the asymptotic competitive ratio of the FirstFit algorithm int the online
unit interval coloring with [0, 5]-bandwidths is at most ﬁ The following theorem
gives a better bound especially for big values of .

Theorem 4.33. The asymptotic competitive ratio of the FirstFit algorithm in the online unit in-
terval coloring with [0, 5]-bandwidths is at most —2W_, (—%emp(— [1%16 11 ) ), where
W is the Lambert function.

Proof. Let I be the last interval presented by Presenter, and for technical reasons as-
sume that FirstFit colored I with a color n + 2. Let Z; be the set of neighbors of I that
are colored with a color i. The bandwidth associated with the interval I is not greater
than 5. Thus, the sum of bandwidths of all intervals in the set Z; for i < n + 1 is at least
1 — . Otherwise, I wouldn’t be colored with a color n + 2. Hence, each set Z; contains
at least k := [(1 — f)/F] = [1/8] — 1 elements. Lemma 4.5 implies that in the online
unit interval coloring with bandwidths, if FirstFit assigns a color ¢ to the interval I,
then ¢ < % + 1. This inequality may be rearranged to get a lower bound on the
bandwidth of an interval. Thus,

*

2w

() 21— ——
VI:w(l)>1 col(D) =1

Now we estimate the sum of bandwidths of all neighbors of I. Clearly, this sum
cannot exceed 2w*. Let v = %, and assume that n = dw* for some § > . We
bound the sum of bandwidths of intervals in the set Z; for ¢ < yw* +1by 1 — 3, while

for sets with higher colors we use a bound k(1 — 22). Thus we have,

ow*+1 9*
2w > (' + DA =B) + Y k:<1— )

. 1—1
i=yw*+2

2w* = (W +1)(1 = B) + k(6 — y)w" — 2kw™ (Hswr — Hypr)



4.6. Open problems 63

where H; is the j-th harmonic number (H; = )/, %). We bound harmonics by a
natural logarithm H, — H, < f::ll % =1In %, and remove some positive constants from
the right hand side. Hence,
4]
2>9(1—B)+ k(6 —7v) —2kln—
g
§ 1. 5 11
n—>-0+—(1-08)—=y— -
ns 20t =f -3y

The left hand side of the above inequality is a logarithm of J, while the right hand
side is a linear function of J. Thus, there is a maximum ¢ for which this inequality is
satisfied, and hence, the interval I received a color that is not greater than §*w* + 2.
In order to find an explicit value of ¢*, we need to solve an equation of form In (ax) =
bx + c. Thus,

e’ b
In(ar) =br+cear =& — = & ——e = —bre
ax a

From the definition of the Lambert W function we get —bx = W (—2¢¢), and so =

—3 W (—2e°). To get the final form of §* weputa = 3, b= jand ¢ = (1 - §) — 37 — 1.

Hence, /8] - 1 [1/5]
= -wvs (- ()

It is easy to check that the argument is negative, so because we are interested in those
values of § that are greater than 1, we take the branch —1 of the Lambert W function.
O

Figure 4.5 illustrates the best known lower and upper bounds on the competitive ra-
tio of the FirstFit algorithm in the online unit interval coloring with [0, ]-bandwidths.
For small values of 3 the analysis is tight, while there is still some room for improve-
ment for larger values of 3.

4.6 Open problems

In this chapter we presented a series of bounds on the competitive ratio of the FirstFit
algorithm, but there are still some unanswered question. The analysis for the case in
which all bandwidths are allowed is very tight. We proved a linear in terms of o upper
bound which matches the lower bound in this problem up to a sub-linear function of
o. Although, in the case where Presenter cannot use small bandwidths or big ones,
there is quite a big gap between a constant lower bound and a logarithmic in terms
of o upper bound. Another interesting question is whether the competitive ratio of
the FirstFit algorithm in the online unit interval coloring with [0, §]-bandwidths is a
continuous function of 5. In the online bin-packing problem Johnson et al. [21] proved
that this function is in fact a step function, and hence not continuous. Both our bounds
are not continuous (the points of incontinuity are of form 2 for € N.), but the results
we proved do not exclude a continuous solution for this question. However, around
points of form 1, the difference between upper bound and lower bound is very small.
For instance, the best lower bound for 3 = 1 + ¢ is 3.38, while the best upper bound for
3 — €is 3.60.



--- Lemma4.5 ,
Theorem 4.18
Theorem 4.32

—— Theorem 4.33

Asymptotic competitive ratio

Figure 4.5: Asymptotic competitive ratio of the FirstFit algorithm in online unit interval coloring with
[0, B]-bandwidths.



5
Efficient Enumeration of
Non-isomorphic Interval Graphs

5.1 Introduction

Graph enumeration problems, besides their theoretical value, are of interest not only
for computer scientists, but also to other fields, such as physics, chemistry, or biology.
Enumeration is helpful when we want to verify some hypothesis on a quite big set of
different instances, or find a small counterexample. For graphs it is natural to say that
two graphs are "different" if they are non-isomorphic. Many papers dealing with the
problem of enumeration were published for certain graph classes, see [27, 37, 36, 43]. A
series of potential applications in molecular biology, DNA sequencing, network multi-
plexing, resource allocation, job scheduling, and many other problems, makes interval
graphs a particularly interesting class of graphs. In this chapter, we present an efficient
algorithm that for a given positive integer n lists all non-isomorphic interval graphs
on n vertices. It is well-known that the number of such graphs is roughly n"“ for some
constant ¢, see [1, 18, 19]. For that reason, we measure the efficiency of the enumeration
algorithm by the worst-case time delay between output of any two successive graphs.

5.1.1 Previous work

Yamazaki et al. [43] presented an enumeration algorithm for non-isomorphic interval
graphs that works with the worst-case time delay O(n®), and recently [44] improved it
to O(n*). Their algorithm is based on the reverse search method, invented by Avis and
Fukuda [3], and in its general form works in the following way. Let C be a family of
graphs we want to enumerate, and let Gy, ..., Gy € C be some special graphs called
roots. We define a family forest F which spans C, and consists of k rooted trees T3, ..., 7j
such that the root of 7; is G;. For graphs that are not roots, let par : C~\{G1,...,Gy} = C
be the parent function. In order to enumerate all graphs in the family C, we indepen-
dently enumerate all graphs in each tree 7;. To enumerate all graphs in the tree 7; we
use any tree traversal algorithm like BFS or DFS. The most time consuming operation
in the tree traversal is computing the children of a graph G. From the definition, chil-
dren of GG are those graphs G’ € C whose parent is G. Hence, if we want to design a
fast enumeration algorithm that uses this technique, we need to carefully define the
parent function. Authors in [44] used the fact that for every interval graph G = (V, E)
that is not a complete graph, there is at least one edge ¢ ¢ E such that the graph
G. = (V, E U{e}) is also an interval graph. They defined the only root G; to be a com-

65



66 Efficient Enumeration of Non-isomorphic Interval Graphs

plete graph on n vertices, and par(G) = G, where the edge e is uniquely defined - for
more details see [44]. The consequence of this approach is the fact that for every graph
G there are at most | E'(G)| candidates for the children of G in F, and so this number of
potential children does not depend on the size of the enumerated family. Moreover, the
authors observed that in order to enumerate only non-isomorphic graphs, it is enough
to filter out isomorphic copies from the set of children. Isomorphism test in the class
of interval graphs is an easy problem thanks to MPQ-trees, see Section 5.2. Hence, to
compute the set of children for a graph G = (V, E), the authors consider all graphs
Ge = (V, E ~{e}). For each of them, they check whether G. is an interval graph using
some linear time recognition algorithm. Then, if G, is an interval graph, they check
whether G = par(G,), and build a corresponding MPQ-tree. Finally, they store a set of
children trees, effectively removing all duplicates.

5.1.2 Owur results

We revisit the work of Yamazaki et al. and show how to modify their enumeration
algorithm to reduce the worst-case time delay between the output of two successive
graphs from O(n*) to O(n?logn). Our key observation is the fact that having an MPQ-
tree corresponding to a graph G = (V, E') we are able to list all edges e such that a graph
Ge = (V, E \ {e}) is an interval graph. Moreover, for each such edge we show how to
build an MPQ-tree corresponding to the graph G, without constructing it explicitly.

Organization of this chapter

In the next section we introduce concepts and definitions that are widely used in this
chapter, and also provide a detailed description of MPQ-trees along with their most
important properties. In Section 5.3, we present a total ordering over all MPQ-trees,
define a canonical MPQ-tree using this ordering, and also present a fast algorithm that
for a given MPQ-tree 7 computes its canonical form 7”. In Section 5.4 we consider an
MPQ-tree T corresponding to an interval graph G = (V, E), and characterize edges e
such that the graph G. = (V, E' \ {e}) is also an interval graph. Moreover, for every
edge e we either show a linear time algorithm that produces a string representing G.
if it is an interval graph, or show an induced chordless cycle on four vertices or an
asteroidal triple in G, that certifies that G. is not an interval graph. In Section 5.5 we
develop data structures and algorithms that make use of combinatorial characteriza-
tion from Section 5.4 and present a fast algorithm which for a given MPQ-tree lists all
edges e such that G. is an interval graph. Finally, in Section 5.6 we show how to com-
bine all parts together and build the graph enumeration algorithm. We also show the
worst-case performance analysis of our algorithm in this section. The last section con-
tains a discussion of some implementation heuristics that do not change the worst-case
analysis, but significantly speedup the execution.

5.2 Preliminaries

Graph notation. For a graph G = (V, E) and a pair of vertices z,y € V, we denote
G+ (z,y)agraphG' = (V,EU{(z,y)}),and G — (z,y) agraph G' = (V, E <~ {(z,y)}).



5.2. Preliminaries 67

Interval edge. For an interval graph G, we say that an edge (z,y) € E(G) is an
interval edge if G — (x,y) is also an interval graph.

String representation. A sequence S of length 2n is called a string representation if
each element = € [n| appears exactly two times in S. Note that a string representation
S encodes an interval graph in a natural way. For every z € [n] let first(z) denote the
index of the first appearance of z in S, and second(z) denote the second one. Then z is
represented by an interval I, = [first(z), second(z)].

5.2.1 PQ-trees

It is easy to notice that an interval graph can have many different interval representa-
tions. Booth and Lueker in [30] introduced a data structure, called a PQ-tree, which
encodes all normalized interval representations of an interval graph. A PQ-tree is a
rooted labeled plane tree composed of leaves and two kinds of internal nodes called
P-nodes, and Q-nodes respectively. The left to right ordering of the leaves of a PQ-tree
T is called the frontier of T. We say that 7" encodes an interval graph G, if each maximal
clique of the graph G is stored in exactly one leaf of 7', and each vertex v € V(G) be-
longs to a consecutive sequence of cliques in the frontier of 7. Having a PQ-tree T’ one
can obtain another PQ-tree 7" which is equivalent to T using the following two opera-
tions: arbitrarily permute the children of a P-node, or reverse the order of the children
of a Q-node. The crucial property of a PQ-tree T is the fact that for every permutation
o of maximal cliques of the graph G such that each vertex belongs to a consecutive
sequence of cliques, there is a PQ-tree 7" that is equivalent to 7', and frontier of 7" rep-
resents o. In other words, each normalized interval representation of the graph G is
represented by some tree equivalent to 7.

5.2.2 MPQ-trees

PQ-trees are quite simple and easy to understand data structure representing interval
graphs, but unfortunately they may occupy up to O(n*) space. To reduce the space
consumption, Korte and Mohring [28] presented modified PQ-trees called MPQ-trees. In
an MPQ-tree, we do not store maximal cliques in leaves, but we assign to each P-node
and each child of a Q-node a set of vertices in such a way that vertices laying on a path
from the root of the tree to some leaf represent a maximal clique in G, see Figure 5.1C
for an example. For a Q-node () with children T, . .., T}, we denote S; the set of vertices
assigned to 7T;, and call it the i-th section of ). Note that, each vertex belongs to the
consecutive sequence of maximal cliques, so it has to belong to consecutive sequence
of sections of a Q-node. Hence, in order to limit the used space, we can store the
information about the vertex z only in the first and last section it belongs to. Thanks to
this modification, an MPQ-tree is an O(n) space representation of an interval graph. In
this chapter we show several drawings of MPQ-trees. We represent P-nodes as circles,
and Q-nodes as rectangles divided into smaller rectangles representing sections of the
Q-node. For instance, in the Figure 5.1C the root is an empty P-node, and the vertex 6
belongs to the sections S; and S of the only Q-node.



68 Efficient Enumeration of Non-isomorphic Interval Graphs

1 31 | st <
6—————

® (W
S ea@@

1H 5 D) 1,1,5,3,2,4,4,2,6,3,8,7,7,6,5,13,11,9,9, 12,12, 11, 10, 10, 13, 8

1,1,2,3,4,5,5,4,6,3,7,8,8,6,2,9,10,10,11,12,12,13,13,11,9, 7

Figure 5.1: A) An interval graph G, B) Its interval representation Z, C) Its MPQ-tree T,
D) String representation S of tree 7, E) Canonical string representation

5.2.3 Known results

During past decades, many researchers published their results on constructing both
PQ-trees and MPQ-trees. Those trees were mostly used to test whether a given graph
is an interval graph. Booth and Lueker used PQ-trees in their recognition algorithm
[30] and proved that for a given graph G the corresponding PQ-tree can be computed
in O(n+ m) time. In [28] Korte and Mohring presented analogous result for MPQ-
trees. Although, we are most interested in work of Saitoh et al. [39] who presented an
algorithm that constructs an MPQ-tree for a given interval graph representation and
works in O(nlogn) time, or O(n) if the endpoints of intervals are already given in an
ascending order.

Theorem 5.1 ([39] Thm.12). If the graph G is given as an interval representation such that the
endpoints are sorted by the coordinates, then there is an algorithm that produces an MPQ-tree
corresponding to G in O(n) time.

Clearly, having a string representation of the graph GG, we can produce an interval
representation satisfying the conditions of Theorem 5.1 in O(n) time. Hence, we have
the following corollary.

Corollary 5.2. There is an algorithm that for a given string representation S of the graph G
builds a corresponding MPQ-tree T in O(n) time.

Before we proceed to technical definitions and lemmas, we provide some naming
conventions we are going to use in the rest of this chapter.

Node. To avoid a confusion when talking about elements of a graph and elements
of a tree, we always refer elements of a graph as vertices and elements of a tree as nodes.
For a vertex v of a graph GG, we denote node(v) the node of a corresponding MPQ-tree
7T such that v belongs to the set assigned to that node.

Subtree. For a node with & subtrees 11, ..., T, we denote V; the set of all vertices
that are assigned to the nodes of a subtree 7;. If V; = (), then we say that a subtree T; is
empty.



5.2. Preliminaries 69

Endpoint. For a Q-node we say that a vertex v has its left endpoint in a section
Siw), if v belongs to Sj,) and does not belong to any other section S, with b < I(v).
Analogously, we say that v has its right endpoint in S,.,, if v belongs to S,(,) and does not
belong to any other section .S, with b > r(v). Vertex v is contained in sections S, . .., Sy,
ifa <l(v) <r(v) <b.

String representation. For an MPQ-tree 7 we define a 2n-element string S called
string representation of T. This string is built recursively over the structure of 7. For
a P-node we first output all vertices that belong to that node, then recursively string
representations of the children from left to right, and at the end yet again all vertices
that belong to that node, but now in the reversed order. Hence, the string representa-
tion for a P-node with vertices [k] and no children is 123... (k — 1)kk(k — 1)...321. A
string representation for a Q-node is a concatenation of string representations for its
sections. The string for a section S; starts with vertices that have its left endpoint in S;,
then there is a string for a subtree 7}, and finally vertices that have its right endpoint in
S;. It is easy to see that string representation of 7 is also a string representation of the
graph corresponding to 7.

Normalized string representation of 7. Consider a permutation o : [n] — [n], and
a string o(S), which results from the application of ¢ to each element of S. Normalized
string representation is the lexicographically smallest string ¢(S) among all permuta-
tions o.

Finally, we recall some properties of MPQ-trees produced by the Algorithm from
Theorem 5.1.

Lemma 5.3 ([28, 40]). In the MPQ-tree constructed in Theorem 5.1 for every Q-node with k
children we have:

a) Vi #0and Vi, # 0,
b) Sy C Syand S, C Sk—1,
c) Si-1NS; #0, for2 <i<k,
d) Si1# S, for2<i<k,
e) (SiNSi)NS1#Vand (S;i_1NS) NSk #0,for2<i<k—1,and
) (SiciUVii)) N S; #band (S; UV;) N Siz1 # 0, for2 <i < k.
Moreover:
g) there are no two empty P-nodes such that one of them is a parent of the other,
h) there is no P-node that has only one child which root is also a P-node, and
i) P-nodes have no empty children,

see Figure 5.2.



70 Efficient Enumeration of Non-isomorphic Interval Graphs

T
ORI Tﬂn . O
Tl T2 Tl"'Tk: Tl"'Tk

Figure 5.2: MPQ-trees do not contain two consecutive empty P-nodes (left), or a P-node with only one
child which root is also a P-node (right).

5.3 Canonical MPQ-tree

In this section, we define a total ordering < over MPQ-trees. One may notice that
the lexicographical order on string representations is a total ordering on MPQ-trees,
but for complexity reasons we introduce a different one. Denote by |7| the num-
ber of vertices contained in the tree 7, ¢(7) the number of children of the root of
T, and ex(7) the number of vertices that belong to the root of 7. We assign a tuple
tr = (|T|,ex(T),c(T)) € N? to every tree T, and say that 7; < 75 if ¢, is lexico-
graphically smaller than t7;, or t7; = t7, and normalized string representation of 7; is
lexicographically not greater than normalized string representation of 7;. We say that
MPQ-tree T is in canonical form, if for every other tree 7' representing the same graph
G wehave T < T'. A string S is a canonical string, if it is a normalized string represen-
tation of a canonical tree. Observe that if 7 is in a canonical form, then all subtrees of
7T are in a canonical form. Clearly, if some subtree of 7 is not in a canonical form, then
we may rotate it and obtain a lexicographically smaller string.

The main feature of our canonization lies in the following theorems.

Theorem 5.4. Two interval graphs G, and G, are isomorphic if and only if their canonical
strings Sy and Sy are equal.

Theorem 5.5. There is an algorithm that for every MPQ-tree T computes its canonical form
in O(nlogn) time.

Proof. At the very beginning, we shall compute a function g that for every vertex v
will describe its relative position among all vertices from node(v). We compute this
function for each P-node independently, and for all Q-nodes collectively. For a P-node
with j vertices 2y, ..., z;, we assign ¢(z;) = i. Thus, we can compute the function g
for all P-nodes in O(n) time. In order to compute this function for all Q-nodes, at first
we assign a tuple (I(v),(v)) to each vertex v which belongs to some Q-node. Then we
sort all tuples using radix sort algorithm, and visit vertices in the order determined by
their tuples. For each Q-node we keep a local counter that starts with 1 and increases
each time we visit a vertex from this node. Thus, because all vertices are from the set
[n], and each Q-node has a linear in terms of n number of sections, we compute this
function for all vertices in O(n) time.

We shall construct a function f that assigns an integer f(7’) > n to every subtree
7' of a tree T in such a way that 71 < 72 & f(71) < f(72). Simultaneously we will
rotate subtrees so that they are in canonical form. At first, we compute tuples ¢ for
each subtree 77 of a tree 7. Clearly, it can be easily done in O(n) time. Then, we sort
the tuples lexicographically in O(n) using radix sort algorithm. In the next phases, we



5.4. Classification of Interval Edges 71

inspect nodes of tree 7 that have the same tuple (|77|, ex(T"),c(7")), and we do it from
the smallest tuples to the biggest ones. Observe that, when we define the value of the
function f for 7”, the values for all subtrees of 7" are already computed.

All subtrees of 7" are in a canonical form, so in order to compute a canonical form of
T’, we need to determine the order of its children. If the root of 7’ is a P-node, then we
use integers f(7;) as keys for children, and sort them in O(clog c) time, where ¢ = ¢(7”).
If the root of 7' is a Q-node (), then we may leave it in the form it is or reverse it. To
decide what to do, we compute a special string representation S*, which is similar to
the string representation, but for each vertex v that belongs to ) we put g(v) instead
of v, and instead of inserting the whole string for a subtree 7;, we put a single number
f(T:). Hence, the produced string has length 2 x ex(7") 4+ ¢(7") and is produced in time
proportional to its length. We also produce similar string for a rotated node, and if that
string is lexicographically smaller than the original one, then we rotate Q).

We have just computed canonical forms for all subtrees with the same tuple. For
each of them we produce a special string, and sort those strings lexicographically. Fi-
nally, we assign values from the set {4+ 1, F' + 2, ...}, where F is the maximal num-
ber assigned to trees with lexicographically smaller tuples (or F' = n if there are no
smaller). We assign those numbers according to the computed order giving the same
value to the subtrees with the same special string representation, and that finishes the
algorithm description.

Now, we prove that the algorithm works in the declared time. As we mentioned
before, the computation of the function g is linear in time. The same applies to the
computation and sorting for the node tuples. Sorting children of a P-node with c chil-
dren takes O(clogc). Hence, because all P-nodes cannot have more than O(n) chil-
dren in total, we conclude that sorting children for all P-nodes takes no more than
O(nlogn) time. The length of a special string for a Q-node with j vertices and & sec-
tions is O(j + k). Thus, the total processing time for all Q-nodes is linear in terms of
n.

The only thing we have not counted yet is the time spent on sorting subtrees with
the same tuple. Note that for a tuple (s, e, c), each special string has length exactly
2e + c. Let ny.. be the number of subtrees having a tuple (s, e, c). Sorting process for
those subtrees takes no more than O((e + ¢)ng..log ne.). Thus, all sortings together
take O(>_,.. (e + ¢)ngeclogng.). Note that ny,. < n, so we only need to show that
Y see (€ + C)ngee is O(n). But, clearly > en,. = n since this sum counts vertices in
all nodes. Similarly, > _ . cng.. equals the number of edges in 7, and we are done. [

sec

5.4 Classification of Interval Edges

In this section we present a series of lemmas that characterize the interval edges for
the interval graph G. Moreover, for each interval edge (z,y), we also present a linear,
in terms of n, algorithm that produces a string representation for the interval graph
G — (z,y). For an edge (z,y) that is not an interval edge, we prove the existence of
an induced chordless cycle on four vertices or an asteroidal triple in G — (z,y). The
characterization does not use the mere graph G, but the corresponding MPQ-tree T
instead.

First, let us introduce a useful definition. We say that z is over y in T, if node(z) is



72 Efficient Enumeration of Non-isomorphic Interval Graphs

the lowest common ancestor of node(z) and node(y) in 7. Notice that, if = is over y
then (z,y) € E(G). Moreover, if there is an edge (x, y) in the graph G, then z is over y,
or y is over . Now, we make an easy observation on interval edges.

Observation 5.6. If there are at least two vertices z; and zo such that both x and y are over z;
and z,, and there is no edge (z1, z2), then (x,y) is not an interval edge.

Proof. Vertices xz, 71, y and 2z, in that order form a cycle of length 4. We assumed that
there is no edge between z; and 2, so if there is no edge between z and y, then this
cycle is chordless in G — (z, y), see Figure 5.3. Hence, G — (z, y) is not a chordal graph
and so not an interval graph. O

@ O
o8 ‘@e.e

Figure 5.3: An induced Cj after removing edge (z, y).

The above observation is just one way in showing that the edge (z,y) is not an
interval edge. However, in cases when (z,y) is an interval edge, we want to show a
linear time algorithm that produces a string representation for a graph G — (z,y). The
following lemma, we call the swapping lemma, comes handy when we try to produce
the mentioned string. It shows when we can swap two consecutive elements in a string
representation without adding or removing any edges to the represented graph.

Lemma 5.7. Let Sy and S, be string representations, such that S, is created from S, by swap-
ping elements at positions i and i + 1 for some i. Denote by a the element at the i-th position
in Sy, and by b the element at the (i + 1)-th position (S; = ....ab.. and Sy = ...ba..). S; and
S, represent the same interval graph iff both elements at swapped positions represent either left
endpoints or right endpoints.

Proof. Clearly, at most one edge can be added or removed by swapping those two
elements. If we swap the left endpoint of a and the right endpoint of b, then we remove
an edge (a,b). If we swap the right endpoint of a and the left endpoint of b, then we
add an edge (a, b) which is not present in ;. If both elements represent left endpoints,
then right endpoints for both a and b are to the right of i 4- 1, hence no edge is added or
removed. Similar argument works when both elements represent right endpoints. [

Our aim is to characterize all interval edges in terms of the information provided
by an MPQ-tree 7. Hence, as an input we are given an MPQ-tree 7 and some edge
(x,y) € E(G). Without loss of generality, we assume that z is over y in 7, and we work
under this assumption in the following subsections. We split our argument into cases
according to the positions of node(z) and node(y) in T.



5.4. Classification of Interval Edges 73

5.4.1 Both vertices belong to the same P-node

Suppose both z and y belong to the same P-node P in 7. We show that under this
assumption, the edge (z,y) is an interval edge if and only if P is a leaf in 7.

Lemma 5.8. If node(z) = node(y) is a P-node that is not a leaf, then (x,y) is not an interval
edge.

Proof. Let P be the considered common P-node, and assume it has j subtrees for some
j = 1. If 5 > 2, then by Lemma 5.3i let 2; € V; and 2, € V5. Clearly, there is no edge
between z; and z; and both = and y are over z; and z,. Hence, Observation 5.6 implies
that (x,y) is not an interval edge. Thus, P has exactly one subtree, and according to
Lemma 5.3h, its root has to be a Q-node, see Figure 5.4. Moreover, Lemma 5.3a implies,
that the first and last sections of a Q-node have nonempty subtrees. Let z; belong to the
tirst subtree, and z; belong to the last one. Yet again, assumptions of the Observation
5.6 applies, so (z,y) is not an interval edge. O

T 15

Figure 5.4: Removing an edge from a P-node that is not a leaf leads to an induced C} cycle.

Lemma 5.9. If node(z) = node(y) is a P-node that is a leaf, then (x,vy) is an interval edge.
Moreover, there is a linear time algorithm that produces a string representation for the graph

G — ({L‘,y)

Proof. Without loss of generality assume that = < y, and consider the canonical string
S for the MPQ-tree 7. Clearly, S is of the form S = LAxByCCyBxzAR, see Figure
5.5. In order to remove the edge (z,y) we find the first and the last occurrence of z
in §. Then, until z does not occupy two consecutive positions, we swap S|i] with
S[i + 1], and S[j] with S[j — 1], where i denotes the first occurrence of x and j denotes
the second. Next, we do the same for y, and as a result we get a string such that both
y’s are next to each other and are surrounded by both z’s, see Figure 5.5c. Finally, we
swap the first occurrence of y with the second occurrence of z, effectively removing
the edge (z,y). Clearly, this procedure runs in O(n) time, but we have to ensure that it
does not add or remove any other edge. Note that, all modifications are performed in
a substring of S that represents a clique, and is of the form 2y 2 ... 232 . . . 2221. Hence,
each swapping operation - except the last one - swapped either two left endpoints or
two right endpoints. Thus, Lemma 5.7 ensures that no edge was added or removed
during this process. Finally, during the last swap = and y occupy four consecutive
indexes. Hence, the only affected vertices are x and y.

O



74 Efficient Enumeration of Non-isomorphic Interval Graphs

prefix P-node sufix
a) L| Az ByCCyBxz A|R
b L|AByCxxCyBA|R
o) LIABCxyyxCBA|R

d) L|ABCxxyyCBA|R

Figure 5.5: Removing an edge from a leaf P-node.

5.4.2 Both vertices belong to the same Q-node

The next case is when both vertices belong to the same Q-node. Here we show that
(x,y) is an interval edge if and only if x and y have exactly one common section and
the subtree of this section represents a clique (possibly empty). In case this clique is not
empty this means that the subtree of the common section consists of a single P-node.

Lemma 5.10. If node(x) = node(y) is a Q-node, then (x,y) is not an interval edge if:
e x and y have more than one common section in node(x) = node(y), or
e 1 subtree of the common section does not represent a clique (possibly empty).

Proof. Assume that there is a common section S; and its nonempty subtree T; that does
not represent a clique. Hence, there are at least two vertices z; and 2, in V; such that
there is no edge between them, otherwise 7; would represent a clique. Thus, Observa-
tion 5.6 implies that (z, y) is not an interval edge.

Now, if there are two common sections S; and S; such that both of them have
nonempty subtrees T; and T} respectively, then we may choose z; € V; and 2z, € V;
and use the same argument. This proves that common sections have empty subtrees
except at most one which represents a clique.

Finally, assume that there is more than one common section ie. S;, Si41,...,S;_1,5;
and without loss of generality S; has an empty subtree. Lemma 5.3f implies that there
is a vertex z; for which the section S; is the last one (z; does not belong to sections
Sit1,---,9;). Notice that z; ¢ {z,y}, otherwise j = i. If there is a nonempty subtree 7,
for some i < a < j, then we choose z; € V,, and Observation 5.6 leads to an induced
chordless cycle. Hence, all common subtrees are empty and Lemma 5.3f gives us a
vertex zo for which S; is the first section. Observation 5.6 for vertices xz,y, 2; and 2z
finishes the proof. O]

Lemma 5.11. If node(xz) = node(y) is a Q-node, x and y have exactly one common section
S; in it, and the subtree T; represents a clique (possibly empty), then (x,y) is an interval edge.
Moreover, there is a linear time algorithm that produces a string representation for the graph

G — (Sl],y)

Proof. Again, we assume that + < y and consider the canonical string S for the MPQ-
tree 7, but in this case S has a more complex form than in the Lemma 5.9. In fact, it is
of the form S = AzBLyL,V;V;RyxRyCyD, where L; U L, represents the left endpoints
of vertices from S;, R, U R, represents the right endpoints of vertices from S;, and V; U v



5.4. Classification of Interval Edges 75

represents a clique from the subtree, see Figure 5.6. In order to remove the edge (z,y),
at first we need to determine for each element in S whether it represents the left or
the right endpoint. It can be easily done in O(n), since all elements in S belong to the
set [n]. The next phase swaps the first occurrence of y with its successor until the next
element represents a right endpoint. Analogously, we swap the second occurrence of x
with its predecessor until the next element represents a left endpoint. Clearly, because
of Lemma 5.7 we did not add or remove any edge till this moment, and S looks like in
Figure 5.6c. Finally, we can remove the edge (z,y) by swapping the first occurrence of
y with the second occurrence of z, that in fact occupy consecutive positions in S.

refix 1 , sufix
p ﬁ section S; ﬁ Si

a) A:UB\LlyLQ‘/;‘_/ZRlxR2|C'yD

& —F——R][ ...
b) AwB‘Lngwy%ﬁ1$R2|CyD | YT
¢) ArB| L1 LyViyxViRi Ry|Cy D \
d) AxB| L1 LyVizyV; Ry Ry|Cy D T;

Figure 5.6: Removing an edge from the same Q-node.

5.4.3 Vertices in different nodes.

In the previous two subsections, we provided a full classification for the cases where «
and y belong to the same node in 7. In this subsection, we consider the cases where «
and y belong to different nodes in 7. Before we present our results in those cases, we
introduce a terminology that allows us to describe a path between node(x) and node(y)
in7.

For a Q-node with k sections 5, . .., S, we say that the section S, is a central section
if 1 < a < k. Sections S; and S, are called non-central sections. For a vertex v we say
that the section S, is a v-central section if I(v) < a < r(v). Sections S,y and S, are
v-non-central sections. For every two vertices x and y, there is exactly one path in the
tree 7 between node(x) and node(y). We say that this unique path is an (x, y)-tree-path
if z is over y in 7. For an (x, y)-tree-path: node(x) = ny —ny—...—n; = node(y), we say
that this path goes through a central section if there is a Q-node n; for 1 < ¢ < ¢ such that
n;+1 belongs to a subtree of some central section of n;, see Figure 5.10. Moreover, we
say that the path starts in a central section if n; is a Q-node, and n, belongs to a subtree
of some z-central section. Analogously, it starts in a non-central section if n, belongs to
a subtree of some z-non-central section. We also say that an (z, y)-tree-path starts in a
P-node, if node(z) is a P-node, and ends in a P-node if node(y) is a P-node. Analogous
definitions apply to Q-nodes. Finally, we say that an (z,y)-tree-path is almost rotable
if it does not go through a central section, and ends in a leaf (which obviously as to
be a P-node). An (x,y)-tree-path is rotable if it is almost rotable, and either starts in
a P-node, or starts in a non-central section. Intuitively, if an (z, y)-tree-path is almost
rotable, then we are able to rotate all the nodes on the path ny, — ... — n, in such a way
that y is the leftmost vertex in the subtree which root is 7.



76 Efficient Enumeration of Non-isomorphic Interval Graphs

Now we are ready to characterize interval edges in the case = and y belong to dif-
ferent nodes in 7. We prove that if (z, y)-tree-path is rotable, then (z,y) is an interval
edge. Unfortunately, the reverse implication is not true and sometimes (z, y)-tree-path
is not rotable, but (z, y) is still an interval edge. We shall prove that this happens only
for almost rotable (z, y)-tree-paths satisfying some additional, and quite technical, con-
ditions. First, we show how to compute a string representation for an interval graph
G — (z,y) if (x, y)-tree-path is rotable.

Lemma 5.12. If an (x,y)-tree-path is rotable, then (x,y) is an interval edge. Moreover, there
is a linear time algorithm that produces a string representation for the graph G — (z,y).

Proof. In order to remove the edge (z,y), we do not produce a canonical string S im-
mediately. At first, we need to adjust the tree 7 using some preprocessing. If node(z)
is a Q-node, then we rotate node(x) so that (z,y)-tree-path starts in the section 5j(,).
Then, we rotate 7 so that the path from node(x) to node(y) goes through the leftmost
children of P-nodes and the leftmost sections of Q-nodes. Let 7' be the result of the
described adjustment, and let S be a string representation of 7. Clearly, S is of form
Lz AByCCyBDzR, see Figure 5.7, and both occurrences of y lay in between occur-
rences of z in S. Node node(y) is a P-node that is a leaf, so we start with moving the
tirst occurrence of y to the right and the second occurrence of y to the left until they
both meet, as in the Lemma 5.9. All vertices that lay between the first occurrence of =
and the first occurrence of y represent the left endpoints. Hence, we can swap the first
occurrence of x with its successor until it meets the second occurrence of y. Lemma 5.7
ensures that no edge is added or removed during this process. Finally, moving x once
more to the right swaps the left endpoint of = with the right endpoint of y effectively
removing the edge (z,y).

o) Lz A|ByCCyB|DzR
b) LvA|BCyyCB|DzR
prefix node(y) + x  sufix
o) LA|BCyxyCB|DxzR
d) LA|BCyyxCD|DxR

Figure 5.7: Removing an edge (z, y) in the case where (z, y)-tree-path is rotable.

O

Now, we want to understand an (z, y)-tree-path that is not rotable, but is still almost
rotable. Such a path has to start in some z-central section of some Q-node. We denote
Si, ..., Sy the sections of this Q-node, and S, the z-central section where the (x, y)-tree-
path starts. As we already mentioned, sometimes in that case the edge (z,y) might be
an interval edge. The next two lemmas establish the required conditions for that to
happen.



5.4. Classification of Interval Edges 77

Lemma 5.13. Suppose that the (x, y)-tree-path is almost rotable, starts in a central section S,,
y has no neighbor in a subtree T, and at least one of the following holds:

1. Jico<i(e) 1 Sa {2} C Spand S,_1 NS, C S,
2. 3r@y<v<k : Sa N A{x} C Spand S, N Sp1 € S,
3. Sa~{z} C 5y,
4. Sy~ {x} C ;.

Then (z,y) is an interval edge. Moreover, there is a linear time algorithm that produces a string
representation for the graph G — (x,y).

Proof. Due to some symmetry our arguments for all four cases are very similar, so we
show only the proof for the first case. Assume that thereisa 1 < b < I(z) such that
Sa~{z} C Spand S,-1 N S, C S,. As in the proof of Lemma 5.12, before we produce
the string representation S, we need to make some adjustments in the tree 7. At first,
we insert a new section S* = 5, \ {z} in between sections S,_; and S, see Figure 5.8.
Clearly, an insertion of a new section does not remove the old edges, but it might add
some new ones. However, the section S* is a subset of an already existing section, so
it is not the case. Moreover, the condition that each vertex belongs to the sequence
of consecutive sections is preserved. This is because we assumed that S,_; N S, C S,
and S, \ {z} C S,. Next, we remove the vertex y from the subtree T,. We also define
a subtree 7™ of the section S* to be a single P-node containing y. Note that y has no
neighbor in 7, so no edges were removed, except the edge (z,y). Thus, we obtained
a tree 7' that encodes the graph G — (z,y). In order to get the string representation
for the graph G — (z,y) it is enough to compute the string representation for 7”. This
covers the first two cases. For the third one it suffices to insert the section S* before S;
and in the fourth case we insert S* after Sj.

Sp—1 Sp Si() Sa Sp—1 S* Sy Si(z) Sa
f |+ | = — — | =
* | \ - * | \
| |
w w w T w w w w
Ty Ty Tz T, Ty @ Ty Ti(2) Ty —y

Figure 5.8: Removing an edge (z,y) in the case where (z, y)-tree-path is almost rotable, starts in some
x-central section S, and y does not have a neighbor in a subtree Tj,. (Case 1)

]

Lemma 5.14. Suppose that the (x,y)-tree-path is almost rotable, starts in a central section S,
y has a neighbor in a subtree T,, and at least one of the following holds:

1. l(ac) > land S, - {x} - Sl(w) and Sl(x)—l N Sl(m) cS,,
2. r(x) <kand S, ~ {z} C Sr(z) and Sr(z) N Srz)+1 € Sas
3. l(x)=1and S, ~ {z} C S,



78 Efficient Enumeration of Non-isomorphic Interval Graphs

4. r(z) = kand S, \ {z} C S.

Then (x,y) is an interval edge. Moreover, there is a linear time algorithm that produces a string
representation for the graph G — (z,y).

Proof. This lemma is argued in a similar way to Lemma 5.13, but now y has at least
one neighbor in 7,, so we cannot simply remove y from 7;,. This is also the reason why
conditions of this lemma are sharper than in the previous one. Yet again, we are going
to prove only the first case, so assume that S, \ {2} C i) and Syg)—1 N Sye) € Se.
Instead of inserting a new section S*, we move the section S, to insert it in between
sections Sj;)—1 and Sy(,), see Figure 5.9. Clearly, no edge is added or removed, and the
condition that each vertex belongs to the sequence of consecutive sections is preserved.
Now, we remove z from the section S,. This, removes the edge (z,y), but also all the
edges (z,v), where v € V,. In the next phase, we are going to restore those edges. In
order to do it, at first we rotate the subtree 7, in such a way that the path from node(z)
to node(y) goes through the leftmost children of P-nodes and the leftmost sections of
Q-nodes. Then, we compute the string representation S of the modified tree, and move
the first occurrence of y to the right and the second occurrence of y to the left until both
meet, as in the Lemma 5.9. After this operation is done, y is the leftmost vertex of the
tree T}, - its right endpoint appears first in the string representation of 7;,. In order to
restore all the removed edges except (z, y), we move the first occurrence of z in S to the
left, until its predecessor is the second occurrence of y. Clearly, this procedure restores
all the removed edges except (z, y).

Si(2)—1 Si(x) Sa Six)—1 Sa Si(z)
— [ | I —
f f
— I T 7
Ti(@)-1 Ti(a) Ta Tiwy-1 Tn Ti(a)

Figure 5.9: Removing an edge (z,y) in the case where (z, y)-tree-path is almost rotable, starts in some
z-central section S,, and y has some neighbor in a subtree 7. (Case 1)

]

The above two lemmas cover the only cases where the (z, y)-tree-path is not rotable,
but (z,y) is an interval edge. Now, we are going to show that if the (z, y)-tree-path is
not rotable, and the conditions of those lemmas fail, then (z,y) is not an interval edge.
At first, we prove that if (z,y)-tree-path does not end in a leaf, then (z,y) is not an
interval edge.

Lemma 5.15. If the (x, y)-tree-path ends in a Q-node, then (x,y) is not an interval edge.

Proof. If y belongs to the leftmost section of the Q-node, then we take an arbitrary
vertex z; € V. Otherwise, Lemma 5.3f supplies us with a vertex z; € (S U Vi)
Siy)+1- Analogously, we take a vertex z, € V}, if y belongs to the rightmost section, or
2y € (Sr(y) U W(y)) N Sp(y)—1 otherwise. Clearly, there is no edge between z; and z, and
both x and y are over z; and z,. Thus, Observation 5.6 finishes the proof. l



5.4. Classification of Interval Edges 79

Lemma 5.16. If the (x,y)-tree-path ends in a P-node that is not a leaf, then (x,y) is not an
interval edge.

Proof. Repeat the argument for Lemma 5.8 word by word. O

Now, we are going to prove that if the (z, y)-tree-path goes through a central sec-
tion, then (z, y) is not an interval edge. First, we define a nested path. Consider a Q-node
with & sections Sy, ..., Si. For further convenience we artificially add Sy = Si+1 = 0,
and say that a set of vertices P, ; = (S; U...US;) \ (S;—1 U Sj1) is a nested path, if for
every i < a < j there is at least one vertex v, € P;; that belongs to S, N Sey1. We
call it a nested path, because vertices v;, v;41 ..., v;_1 in that order form (possibly not
simple) path in the graph G, and all of them are completely contained in the sections
Si, ..., 5;. In the following lemma, we show that if the (z, y)-tree-path goes through
a central section of some Q-node, then we can find an asteroidal triple in the graph
G — (z,y). Nested paths help us to find this triple.

Lemma 5.17. If the (x, y)-tree-path goes through a central section, then (z,y) is not an interval
edge.

Proof. Assume that the (z,y)-tree-path goes through some central section S; of a Q-
node @), and let Sy, ..., S, be the sections of (). Subtrees of the first and last section
are nonempty, so let z; € V; and z;, € V;,. We show that vertices y, z; and z; form an
asteroidal triple in the graph G — (z,y).

Since the edge (z, y) has been removed, the path z; —z — 2 avoids the neighborhood
of y. To prove that there is a path between z; and y that avoids the neighborhood of 2,
we show that there is a nested path P, ;,_;, and so the shortest path of form 2 —P; 1 —y
tulfill our requirements. Let P; ; be the longest nested path, i.e. with maximal j < %,
possible. If such a path would not exist then either S; is empty, or all vertices that
belong to S; belong to all sections. In both cases, properties listed in Lemma 5.3 are
violated. Moreover, if j < k — 1, then either S; N S;;; = 0, or S; N Sj41 C Si. Again,
this contradicts Lemma 5.3, and we are done. Finally a path from z; to y that avoids
the neighborhood of 2, is constructed in a similar way. O

Figure 5.10: An (z, y)-tree-path which goes through a central section \S; of some Q-node.

Summarizing the last three lemmas we get the following corollary.
Corollary 5.18. If the (x, y)-tree-path is not almost rotable, then (x,y) is not an interval edge.

We are almost done with our classification. In Lemma 5.12 we proved that if the
(z,y)-tree-path is rotable, then (z,y) is always an interval edge. On the other hand, in



80 Efficient Enumeration of Non-isomorphic Interval Graphs

Lemmas 5.15, 5.16 and 5.17 we considered (z, y)-tree-paths that are not almost rotable,
and showed that for such paths (z, y) is not an interval edge. Hence, the only remaining
cases are (z, y)-tree-paths that are almost rotable, but not rotable. In Lemmas 5.13 and
5.14 we investigated such paths, and proved that under some additional conditions
(x,y) is an interval edge. Now we show that if the (z, y)-tree-path is almost rotable,
but is not rotable, and conditions of Lemmas 5.13 and 5.14 are not satisfied, then (z, y)
is not an interval edge. This case is the hardest one, so that we start with two auxiliary
lemmas.

Lemma 5.19. Let Sy, . . ., Sy, be the sections of some Q-node in an MPQ-tree T (and to simplify
notation add Sy = Sk+1 = 0). Then for every (a,b) # (1,k) with a < b there is a vertex
v € ((Sa,1 N Sa) AN Sb) U ((Sb N SbJrl) AN Sa).

Proof. Assume to the contrary that for some pair (a, b) as above there is no appropriate
vertex, so each vertex u € S, U ... U S, is either fully contained in sections S, ..., S,
or belongs to S, N ... N S,. Without loss of generality assume that b < k. Each vertex
belongs to at least two sections. Hence, no vertex has its right endpoint in S, or left
endpoint in S5;,, and Lemma 5.3 implies that V,, V, and V}, are not empty. Let v, € V,,
vy € Vp, v, € Vi, and consider some maximal cliques C,, C, and C}, such that v, € C,,
v, € Cp and v, € Ck. Note that 7 encodes only those orderings of maximal cliques
in which either C, < Cy, < C, or C}, < C, < C,. Now, consider a modified tree 7" in
which we reverse the order of sections S,, . . ., S;. Clearly, because of our assumptions,
T’ represents the same interval graph as 7, but 7’ encodes an ordering C, < C, < Cj,
which is not encoded by 7. Thus, 7 is not a valid MPQ-tree, and we are done. l

Lemma 5.20. If the (z,y)-tree-path starts in a central section S,, and there is a vertex q €
Sa~ (Sizy U Sy(a)), then (z,y) is not an interval edge.

Proof. Assume to the contrary that (z,y) is an interval edge. Let P, ,, for [(¢q) <7 < a
be a nested path with the smallest /; possible. Analogously, let P, ,, for a < I, < r(q)
be a nested path with the biggest 7, possible. Notice that these paths may not exist.
For instance, if ¢ has its right endpoint in S,, then F,, ,, does not exist.

8

q
Pll ,T1 } : PlQ,m
f | | \‘ | 1 | | | | | [t i 1

Figure 5.11: Paths P}, ,, and Py, ,.

At first, we consider the case where neither of these paths exist, to create an as-
teroidal triple in the graph G' — (z,y). By Lemma 5.19, without loss of generality,
there is a vertex v € (S,(g) N Sr(g)+1) \ Si(e)- Both paths do not exist, so v has to be-
long to S,. Moreover, Lemma 5.3f gives two vertices v, € (Sl(q) U Vl(q)) N Si(g)+1, and
VR € (Sp(g)+1 U Vi(g)41) ~ Si(g)- Thus, the paths: v, — z — vg, v, — ¢ —y,and vg —v —y
certify the asteroidal triple {v;, vg,y}, and we are done in this case.

Now, assume that both paths exist, and put L = max {l,(z)} and R = min {rq, r(z)}.
Lemma 5.3f implies that there is a vertex v, which has its right endpoint in S}, or



5.4. Classification of Interval Edges 81

v, € V5. Analogously, define a vertex vy for the section Si. Clearly, both v; and
vg are neighbors of x, but not of ¢. Hence, {v., vg,y} is an asteroidal triple in the graph
G — (z,y), witnessed by the paths: v, —x —vg, v, — P, ,, —¢—vy,andvg — P, ,, — ¢ —y.
Thus, if both paths exist, then (z, y) is not an interval edge.

Without loss of generality, assume that P, ,, exists, but P, ,, does not. Lemma 5.19
supplies us with a vertex v such that v € (S;,_1 N S},)\Sr(g), 0t v € (Sy(g) N Sr(g)+1) NS
Note that, a this point v and z might be the same vertex. We assumed that right path
does not exist, so Sy N Syg)+1 C Sa. Moreover, [; is the smallest index such that
there is a nested path P, ,, for I(¢) < m < a. Hence, S;,-1 NS, € S,, and thus in
either case v belongs to S,. Lemma 5.3f gives three vertices: v, € (S, UV},) ~ S, -1,
VR € (Sr(q) U V}(q)) ~ ST(q),l, and vy € (Sr(q)+1 U Vr(q)+1) ~ Sr(q). Note that, both vp
and vp4; are neighbors of z, and both v;, and vz, are not neighbors of g.

If I, < i(z), then the paths: v, — P, ,, —* —vgry1, v — Py, —q—y,and vg1 —x—q—y
certify the asteroidal triple {v, vg+1,y}. Thus, we conclude that [(z) < 3 < I(g), which
means that the whole path P, ,, is contained in . Moreover, v # z, and vy, is a neighbor
of z. If v € (S,-1NS;) N\ Sy, then there is an asteroidal triple {vy,vg,y} certified
i.e. by the paths: v, — 2 — vg, v, — v — y and vg — ¢ — y. On the other hand, if
v € (Si(g) N Srgy+1) ™ Su, then {vy, vg41,y} is an asteroidal triple certified i.e. by the
paths: v, — 2 — vgy1, v — P, », — ¢ — y, and vy — v — y. Thus, in this case the edge
(x,y) is also not an interval edge, and we are done. O]

Finally, we are ready to prove the last two negative results on interval edges.

Lemma 5.21. Suppose that the (x,y)-tree-path starts in a central section S,, y has a neighbor
in the subtree T,, and neither of the conditions 1-4 of Lemma 5.14 holds. Then (z,y) is not an
interval edge.

Proof. Assume to the contrary that (z,y) is an interval edge, and let z be the neighbor
of y in T,. Let Sy,..., Sy be the sections of node(zx), and for further convenience add
So = Sk+1 = 0. Our assumptions supplies us with z; # = and z, # z with the properties:
z € (Sa N Sl(m)) U ((Sl(m)—l N Sl(x)) ~ Sa) and z, € (Sa N ST(I)) U ((ST(I) N S,«(x)_i_l) ~ Sa).

First, we consider the case in which both z; and z, belong to the first summands. If
21 = 2z, then z; € S, (Sl(x) U Sr(m)) and Lemma 5.20 leads to a contradiction, hence z; #
2. Using the same argument, we also conclude that z; € S,(,) and 2, € S)(,). Lemma 5.3
supplies us with vertices: vy, € (Syz) U Vi) N Siz)+1 and vg € (Srzy U Vi) N Seiz)—1-
The paths: v, —x —vg, vp — 2z, —y, and vg — 2, — y certify the asteroidal triple {v, vg, y},
and we are done in this case.

Now, without loss of generality, we assume that z, € (S,«(gﬁ) N Sr(x)ﬂ) NS, If 7z also
belongs to the second summand, then consider vertices v, € (Siz)—1 U Vi@)—1) N Siw)
and vg € (Sr(@)+1 U Viw)+1) N Srz) provided by Lemma 5.3, and notice that the paths:
VU, — 2 — % — % — VR,V — 4 — T — 2 —y,and vg — 2, — x — z — y certify the asteroidal
triple {vr, vg, y}.

Finally we are left with the case 2 € S, \ Sy,). Note that if z; ¢ S,(,), then 2z €
S\ (Sl(x) U Sr(x)) and Lemma 5.20 leads to a contradiction. Hence, z; € S,() and
there is an edge between z; and z,. Lemma 5.3f supplies us with two vertices v, €
(Sl(x) U VE(@) ~ Sl(x)Jrl and vp € (Sr(w)+1 U V;(m)+1) ~ ST(QC). The paths: VL, — T — 2 — VR,
v, —x — 2z —y,and vg — z, — 2z — y. certify the asteroidal triple {v, vg, y}, and we are
done. l



82 Efficient Enumeration of Non-isomorphic Interval Graphs

Lemma 5.22. Suppose that the (x,y)-tree-path starts in a central section S,, y does not have
a neighbor in subtree T,, and neither of the conditions 1-4 of Lemma 5.13 holds. Then (x,y) is
not an interval edge.

Proof. Assume to the contrary that (z,y) is an interval edge. Let S, ..., S, be the sec-
tions of node(x), and for further convenience add Sy = Si41 = 0. Our assumptions sup-
plies us with two sequences of vertices z1,. . ., ;) and 2,(,), - . ., 2, with the properties:
Zi € (Sa AN SZ) U ((Sz'—l N SZ) AN Sa) for1 <1 < l(l’), and 2 € (Sa AN SZ) U ((SZ N Si—H) N Sa)
for r(z) < ¢ < k. Moreover, none of these vertices is x. Let p;, be the longest sequence
2Ly ZL41, - - -, Zi(z) Such that all vertices from p;, belong to the second summands. Anal-
ogously, let pr be the longest sequence z,(,), . .., 2r—1, zr With the same property. Note
that z; and z; have to belong to the first summands since S, NS} = S, N Sk = 0.
Therefore, L > 1 and R < k.

If both sequences p;, and pr are empty (both vertices 7,y and z,(,) do not belong to
the second summands), then 2,y € S, \ Sj(z) and z,(;) € Sa \ Sy(z). The same argument
as in the proof of Lemma 5.21 shows that in this case there is an asteroidal triple in the
graph G — (z,y). Thus, without loss of generality we assume that p; contains at least
one element (L < [(x)).

If pr is also not empty, then Lemma 5.3f provides two vertices vy, € (Sp—1 U V1) N
St and vg € (Sg1UVei1) N Sg. Both sequences are the longest possible, so z;_; €
SaNSp—1and zgi1 € Sq \ Sgy1. The paths: v, —p, — 2 —pr—vg, VL —pL — T — 2R41 — Y,
and vg — pr — © — 211 — y certify the asteroidal triple {v, vg, y}, and we are done in
this case.

The last remaining case is that pr is empty, but p;, is not. In this case, take a vertex
vr € (Sr@) U Vi) N Srw)—1 provided by Lemma 5.3f. The sequence pg, is empty, so
Zrz) € Sa \ Sp@). Yet, again we find an asteroidal triple {vr,vR,y} certified by paths:
VU, —=PL — % —UR, VL —PL — T — Zr(a) —y,and vg — T — 211 — Y. [

This finishes our classification of interval edges. For every edge (z,y) that is not
an interval edge we presented structures certifying that G — (x,y) is not an interval
graph, see Lemmas 5.8, 5.10, 5.15, 5.16, 5.17, 5.21 and 5.22. Moreover, for each edge
(x,y) which is an interval edge, we provided a linear time algorithm that produces a
string representation for the graph G — (z, y), see Lemmas 5.9, 5.11, 5.12, 5.13, and 5.14.
One of the consequences of all those lemmas is the following theorem.

Theorem 5.23. There is a linear time algorithm, that for every MPQ-tree T representing graph
G, and every interval edge (x,y), produces a string representation of the graph G — (z,y).

5.5 Listing Interval Edges

In this section we present an efficient algorithm that for a given MPQ-tree T lists all
interval edges of the graph represented by 7.

Let Sy, ..., Sk be the sections of a Q-node Q). Forb € {2, ..., k}, denote f,(b) the max-
imal index of a section such that S, NS, € Sy, ;). Analogously, forb € {1,...,k — 1},
denote f;(b) the minimal index of a section such that S, N Sy11 € Sy,). For every vertex
x which belongs to @, and every [(z) < a < r(x) let:



5.5. Listing Interval Edges 83

. 1 if S, = {x} . k if S, = {z}
)| g 10 A0 o 85

In other words, if S, # {z}, then L*(z,a) = i if S; is the rightmost section such that
there is a vertex v # x which belongs to S, and v has its left endpoint in S;. Now, we
translate the inclusions between sections of a Q-node used in our characterization of
interval edges into this new language:

i) Vicp<a : Sp-1 NSy C S < f(b) > a.
11) Va<b<k : Sb N Sb+1 - Sa =g fl<b) < a.
ill) Viw)<a<r(a) 1 Sa N {2} C Sy © b € [L*(x,a), R*(z,a)].

Using this translation, we reformulate the conditions of Lemmas 5.13 and 5.14 into
the form that will be easier to test algorithmically.

Observation 5.24. For an (z,y)-tree-path that starts in a central section S,, the conditions
1-4 in Lemma 5.13 can be replaced by:

1. L*(z,a) < l(z) and min{l(z), R*(x,a)} > 1l and f.(min{l(z), R*(x,a)}) > q,
=

2. R*(xz,a) = r(x) and max {r(z), L*(x,a)} < kand fi(max {r(x), L*(z,a)}) < a,
3. L*(z,a) =1,
4. R*(z,a) =k,

respectively.

Proof. Note that, conditions (3) and (4) translate directly, and conditions (1) and (2)
are symmetrical. Hence, we only show the equivalence of the first cases. At first, we
show that if there is 1 < b < [(x) such that S, \ {z} C Sy and S,_; NS, C S,, then
L*(z,a) < l(z) and f,(min{l(z), R*(x,a)}) > a. In our new language our assump-
tions are b € [L*(z,a), R*(z,a)] and f.(b) > a. Thus, L*(z,a) < l(z),and 1 < b <
min {{(x), R*(z,a)}. Note that f, is a non-decreasing function, so f,(b) > a, implies
fr(min{i(z), R*(x,a)}) > a, and we are done.

Now, we let b = min {i(z), R*(z,a)}, and show thatifb > 1, f,.(b) > a,and L*(z,a) <
[(z), then S,_1 NS, € S, and S, \ {z} C S,. Clearly, 1 < b < () and f,.(b) > a, so
Sp—1 NSy, € S,. Hence, the only thing we need to show is S, \ {z} C S, which is
equivalent to b € [L*(z,a), R*(z,a)]. It is easy to see that for every x and a we have
L*(xz,a) < R*(x, a). Thus, the interval [L*(z, a), R*(z, a)] is never empty. If b = R*(x, a),
then we are done, so assume that b = [(x). But, in this case L*(z,a) < l(z) = b <
R*(z,a) as required. O

A very similar proof applies to reformulation of Lemma 5.14, so we leave it to the
reader.

Observation 5.25. For an (x,y)-tree-path that starts in a central section S,, the conditions
1-4 in Lemma 5.14 can be replaced by:



84 Efficient Enumeration of Non-isomorphic Interval Graphs

1. l(z) > land l(z) € [L*(x,a), R*(z,a)] and f,(I(z)) > a,
2. r(z) < kand r(xz) € [L*(z,a), R*(x,a)| and fi(r(z)) < a,
3. l(z) =1and L*(x,a) =1,
4. r(z) = kand R*(x,a) =k,

respectively.

As Observations 5.24 and 5.25 provide new fast and easy tests for interval edges,
we are left with determining the values for all the functions [, r, f;, f,, L* and R*. To
store functions [, r, f; and f, we use O(n)-element arrays of integers. Functions L* and
R* in their explicit forms may require O(n?) space. Thus, instead of representing them
as two-dimensional arrays, we replace first the function L* by two one-dimensional
functions L; and L,. We set Li(a) = max{l(v):v € S,}, and denote v;(a) a vertex
for which I(v1(a)) = Li(a). We also define Ly(a) = max{l(v):v € S, ~ {vi(a)}}, or
Ly(a) = 11if S, = {vi(a)}. Using those two functions we are able to compute the
function L* in the following way:

L(s,0) = {Ll(a) if Li(a) # I(x),

Ly(a) otherwise.

Analogously, we can represent the function R* using two functions R; and R;. Now
we are ready to show the interval edges enumeration algorithm.

Lemma 5.26. The functions I, r, f; and f, for all Q-nodes of the tree T can be computed in
O(nlogn) time.

Proof. We argue that computing f, for a single Q-node, say @, with n, vertices, takes
O(nglogng) time. Then we simply sum up all Q-nodes, and since ) n; < n the com-
putation of all functions f, takes no more than O(nlogn) time.

Let i be the minimum index of the section containing a right endpoint of some
vertex from S,_; N S,. Clearly, S,_1 NS, € S; and —(S,—1 NS, € S;41). Hence, f,.(b) =4,
and in order to compute the function f, for all b, it is enough to scan the sections of
()4 from left to right maintaining a heap of right endpoints. When algorithm enters the
section Sy it adds to the heap all right endpoints of vertices that have its left endpoint
in Sy, assigns f,(b) to be the minimum value stored in the heap, and removes all the
endpoints of vertices that have its right endpoint in S;. Thus, the computation of the
function f, for @), takes O(nqlogn,) time. A similar argument applies to the functions
fi, and functions [ and r can be easily computed in O(n) time. O

Lemma 5.27. The functions Ly, Ly, Ry and R, for all Q-nodes of the tree T can be computed
in O(nlogn) time.

Proof. The proof is very similar to the proof of Lemma 5.26. Yet again, we use a heap
of right or left endpoints, but now we are interested not only in the minimal element
but also in the second minimal one. O

Theorem 5.28. There is an algorithm that for a given MPQ-tree T lists all its interval edges
in O(max {n + m,nlogn}) time.



5.6. The Enumeration Algorithm 85

Proof. The algorithm is pretty straightforward. At first, we compute all the functions
l, 7, fi, fr, L1, Loy, Ry and R, in O(nlogn) time. Then, we inspect all P-nodes and all
sections of Q-nodes listing all edges (z,y) that satisfy the conditions of Lemmas 5.9 or
5.11. For a P-node that is a leaf, we list all pairs (v,, v,) for a # b, while for the section
S; with subtree that is either empty or is a P-node with no children, we list the edges
of the form (v, vg), where vy, is a vertex that has its right endpoint in S;, and vy is a
vertex that has its left endpoint in S;. Note that, an MPQ-tree has no more than O(n)
nodes and sections. Moreover, we have a constant time access to all vertices v, and vg.
Thus, this phase works in O(n + m).

Now, we want to find all interval edges (z, y) such that x and y belong to different
nodes in 7, and z is over y. Lemmas 5.15 and 5.16 imply that it is enough to consider
only those pair of vertices (z,y), where y belongs to a leaf of 7. Hence, for each leaf
L of a tree T, we traverse a unique path between L and the root of T, starting from
L, and listing edges of the form (z,y), where = belongs to the currently visited node,
and y belongs to L. We do not list all such edges, but for each candidate we need to
decide whether (z,y) is an interval edge or not. In order to do it efficiently, we keep
two boolean variables: 1. does y have a neighbor in the visited subtree, and 2. does
the path go through some central section. Using those two variables and precomputed
functions, we can decide whether (z, y) is an interval edge in a constant time thanks to
Lemma 5.12, and Observations 5.24 and 5.25. Thus, the time spent by the algorithm in
this phase is bounded from above by the sum of lengths of all paths we have visited
plus the number of tested edges. Lemma 5.3g, implies that on those paths there are no
two consecutive empty P-nodes, so we can bound the sum of lengths of those paths by
O(m). Thus, the time spent by the algorithm in this phase is O(n + m), and the whole
algorithm works in O(max {n + m,nlogn}) time. O

5.6 The Enumeration Algorithm

In this section we present the graph enumeration algorithm. We define a parent-child
relationship in the same way as authors in [44] did using the following lemma.

Lemma 5.29 ([27, 44]). If G = (V, E) is an interval graph which is not a clique, then there is
at least one edge e ¢ E such that G + e is also an interval graph.

Yamazaki et al. used Lemma 5.29 and defined the parent of GG to be a graph G + e
such that G + e is an interval graph and e is lexicographically the smallest possible.
They proved that for every interval graph G its parent can be computed in O(n + m)
time.

Theorem 5.30 ([44] Thm. 5). Let G = (V, E) be any interval graph. Then its parent can be
computed in O(n + m) time.

Thanks to the fact that we work with MPQ-trees and string representations, we get
rid of the O(m) summand using the algorithm from Theorem 5.1 in the way described
below.

Theorem 5.31. There is an O(n) time algorithm that for every canonical MPQ-tree represent-
ing an interval graph G that is not a clique, produces a string representation of a graph G + e,
where e ¢ E is the lexicographically smallest edge.



86 Efficient Enumeration of Non-isomorphic Interval Graphs

Proof. Let S be the canonical string of the considered MPQ-tree. Let 12...j be the longest
(possibly empty) prefix of S such that j...21 is a suffix of S. Clearly, such prefix can be
found in O(n) time. Moreover, all vertices 1, ..., j have degree n — 1 in the graph G.
Hence there is no pair (z, y) ¢ E such that z € [j]. We prove that there is a pair (j + 1,y)
for some y > j+2 such that G+ (j + 1,y) is an interval graph. Let y be the interval with
the leftmost left endpoint that is to the right of the right endpoint of j+ 1. If such y does
not exist, then to the right of the right endpoint of j + 1 there are only right endpoints.
But, this combined with the form of the canonical string contradict the maximality of
the prefix 12...5. Thus, y exists, (j + 1, k) is an edge for all £ < y, and there is no edge
between j + 1 and y. So, G + (j + 1,y) is the parent of G. In order to produce a string
representation for the graph G + (j + 1, y), we move the right endpoint of j + 1 to the
right until it passes the left endpoint of y. Lemma 5.7 guarantees that no edge except
(j +1,y) was added. O

Finally, we take all the pieces together and present the key procedure of our graph
enumeration algorithm.

Theorem 5.32. Let T be a canonical MPQ-tree representing a non-empty (m > 1) interval
graph G. The set of canonical trees for children of G can be computed in O(nmlogn) time.

Proof. At first, we list all interval edges for the tree 7 in O(max {n + m,nlogn}) time,
see Theorem 5.28. Then, for each interval edge e, we produce a string representation
S’ of G — e in O(n) time, build MPQ-tree 7 for the interval graph represented by S’
in O(n), and finally compute the canonical form of 7" in O(nlog n) time, see Theorems
5.23, 5.1, and 5.5. Hence, we compute all canonical strings for children candidates in
O(nmlogn) time. Theorem 5.4 implies that in order to check isomorphism between
the children, it is enough to remove duplicates from this set. It can be easily done by
storing all computed strings in a trie. Finally, we need to filter out those graphs for
which G is not a parent. For each candidate’s canonical string, we compute its parent’s
string in O(n) time, see Theorem 5.31, build a canonical MPQ-tree in O(nlogn) time
and check whether its canonical string equals with a canonical string for the graph
G in O(n) time. Thus, we filter out non-children in O(nmlogn) time, and the whole
process takes O(nmlogn) time. O

5.7 Performance

In the previous section we have presented theoretical analysis of our enumeration algo-
rithm. In this section we present two lemmas, that helped us to significantly speedup
the execution of our algorithm.

Lemma 5.33. Let vy # vq be two vertices of the graph G = (V,E). If N(v1) \ {v2} =
N(vy) \ {v1}, then for every y ¢ {v1,v2} graphs G — (vy,y) and G — (va, y) are isomorphic.

Proof. One can easily check that the function f : V' — V such that f(vy) = vy, f(v2) =
vy and f keeps other vertices untouched, is an isomorphism between G — (vy,y) and
G - (U27 y) O



5.7. Performance 87

A consequence of the above lemma is that if a P-node contains more than one vertex
namely vy, ..., v;, then graphs G — (v, y) and G — (v,, y) for every a > 1 are isomorphic.
Thus, when listing potential candidates for the children of the graph G, we may omit
all edges of the form (v,,y) for @ > 1 and list only the edges of the form (vy,y). The
same argument applies to a Q-node and vertices that occupy exactly the same sections.

Lemma 5.34. Let {vy,..., v} be a clique in the graph G = (V, E)) such that V,+; : N(v;) \
{v;} = N(v;) ~ {v;}. All graphs G, ; = G — (v;, v;) are pairwise isomorphic.

Proof. Consider two graphs G, ; and G ; and a function f : V' — V such that f(v;) =
vy, f(v;) = vy. On the other vertices f is an identity. O

A consequence of this lemma is that if a P-node contains more than 2 vertices, then
we may omit all the edges between them, but one. The same applies to the vertices
that occupy exactly the same sections of a Q-node.

Unfortunately, the tricks of Lemmas 5.33 and 5.34 do not improve the worst-case
time delay, and it is quite easy to show an MPQ-tree that even with those tricks take
O(nmlogn) time to process, see Figure 5.12 for example.

’
’
’

Figure 5.12: MPQ-trees with ©(n?) interval edges — each node is a P-node and contains exactly one
vertex of the graph.

Storing results

We did implement the proposed algorithms, and generated all non-isomorphic in-
terval graphs on n vertices for all n < 15. The results are available at https://
patrykmikos.staff.tcs.uj.edu.pl/graphs/. Our algorithm is fast enough to
generate all non-isomorphic interval graphs even for higher values of n in reasonable
time, but unfortunately we lack enough space to efficiently store them. For instance
string representations of all non-isomorphic interval graphs on 15 vertices occupies
about 200 GB of disk space. Based on our results, we estimate that string represen-
tations of all non-isomorphic interval graphs on 20 vertices would occupy more than
20 PB. In order to significantly reduce the space usage, we developed a simple binary
format to store the generated graphs.

Shorter canonical representation

In order to store generated string representations efficiently, at first we get rid of redun-
dant information from the string representation. For each 2n-element canonical string


https://patrykmikos.staff.tcs.uj.edu.pl/graphs/
https://patrykmikos.staff.tcs.uj.edu.pl/graphs/

88 Bibliography

representation we consider its prefix that ends at the first occurrence of the element n.
Note that all edges of the original graph are encoded in that prefix, so there is no need
to store the longer sequence. Moreover, we can also remove the element n since all
elements [n — 1] are present in the prefix and so n is uniquely determined.

For instance the sequence 1234567889 7101096 54 321 translates into 1 2
345678897. In order to convert the shortened sequence into the original one, at
tirst we find the maximum element it contains and denote it x. Then we add z + 1 two
times and all elements that appeared exactly once in the shortened form in a decreasing
order. In the sequence 1234567889 7 the maximum element is 9 and elements 1 2 3
456 9 appear exactly once. So we append a sequence 10 1096 54 3 2 1 at the end.

Binary format for Trie

Now we present a binary format used to store a Trie of shortened canonical representa-
tions. We assume that this Trie contains only canonical representations of graphs on n
vertices for some of the ours n. We use the first byte of the file to store the information
about that n. Then, we recursively store Trie nodes. For each node, we store 2 bits.
First of them is 1 if Trie contains a representation that ends in this node. The second bit
is 1 if the given node is a leaf in Trie. For inner nodes (the second bit is 0) we store an
additional vector of n — 1 bits, where i-th bit tells whether this node has a child labeled
with . Thus, for each Trie node that is a leaf we use exactly 2 bits, while for the inner
nodes we use n + 1 bits per each. Finally, we compress the resulting binary file using
LZMA compression with parameter —best. The following table shows the results we
achieved.

| n | Number of graphs | Size of raw file | Size of binary file | Size of compressed file |
1 1 5B
2 2 18 B
3 4 52 B
4 10 170 B
5 27 567 B
6 92 2.3kB
7 369 11 kB
8 1,807 59 kB
9 10, 344 374 kB
10 67,659 2.7 MB
11 491, 347 23 MB
12 3,894, 446 197 MB 6.7 MB 727 kB
13 33,278,992 1.9GB 60 MB 2.3 MB
14 304,256, 984 19 GB 565 MB 17.2 MB
15 2,290,093, 835 5.6 GB 76.2 MB

Table 5.1: Size of files required to store all generated graphs.




Bibliography

[1] Hiiseyin Acan. Counting unlabeled interval graphs, 2018.

[2] Udo Adamy and Thomas Erlebach. Online coloring of intervals with bandwidth.
In WAOA 2003: 1st International Workshop on Approximation and Online Algorithms,
Budapest, Hungary, September 2003. Proceedings, volume 2909 of Lecture Notes in
Computer Science, pages 1-12, 2004.

[3] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Math-
ematics, 65(1):21-46, 1996. First International Colloquium on Graphs and Opti-
mization.

[4] Yossi Azar, Amos Fiat, Meital Levy, and NS Narayanaswamy. An improved algo-
rithm for online coloring of intervals with bandwidth. Theoretical Computer Science,
363(1):18-27, 2006.

[5] Janos Balogh, J6zsef Békési, and Gabor Galambos. New lower bounds for certain
classes of bin packing algorithms. Theoretical Computer Science, 440-441:1-13, 2012.

[6] Kenneth P. Bogart and Douglas B. West. A short proof that “proper = unit’. Discrete
Mathematics, 201(1):21-23, 1999.

[7] Marek Chrobak and Maciej Slusarek. On some packing problem related to dy-
namic storage allocation. Informatique théorique et applications, 22(4):487-499, 1988.

[8] Edward G. Coffman and Janos Csirik.  Performance guarantees for one-
dimensional bin packing. In Handbook of Approximation Algorithms and Metaheuris-
tics, 2007.

[9] Edward G. Coffman Jr., Janos Csirik, Gdbor Galambos, Silvano Martello, and
Daniele Vigo. Bin Packing Approximation Algorithms: Survey and Classification,
pages 455-531. Springer New York, New York, NY, 2013.

[10] Janos Csirik and Gerhard ]. Woeginger. On-line packing and covering problems,
pages 147-177. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[11] Reinhard Diestel. Graph Theory. Springer Berlin Heidelberg, 2017.

89



90 Bibliography

[12] Leah Epstein and Meital Levy. Online interval coloring and variants. In ICALP
2005: 32nd International Colloquim on Automata, Languages and Programming, Lisbon,
Portugal, July 2005. Proceedings, volume 3580 of Lecture Notes in Computer Science,
pages 602-613, 2005.

[13] Leah Epstein and Meital Levy. Online interval coloring with packing constraints.
In MFCS 2005: 30th International Symposium on Mathematical Foundations of Com-
puter Science, Gdarisk, Poland, August 2005. Proceedings, volume 3618 of Lecture
Notes in Computer Science, pages 295-307, 2005.

[14] P. C. Fishburn and R. L. Graham. Classes of interval graphs under expanding
length restrictions. Journal of Graph Theory, 9(4):459-472, 1985.

[15] G. Galambos and ]J.B.G. Frenk. A simple proof of liang’s lower bound for on-line
bin packing and the extension to the parametric case. Discrete Applied Mathematics,
41(2):173-178, 1993.

[16] Magnus M. Halldérsson. Parallel and on-line graph coloring. Journal of Algorithms,
23(2):265-280, 1997.

[17] Magnas M. Halldérsson and Mario Szegedy. Lower bounds for on-line graph
coloring. Theoretical Computer Science, 130(1):163-174, 1994.

[18] P. Hanlon. Counting interval graphs. Transactions of The American Mathematical
Society - TRANS AMER MATH SOC, 272, 1982.

[19] N. Pippenger J.C. Yang. On the enumeration of interval graphs. Proceedings of the
American Mathematical Society Series B, 4:1-3, 2017.

[20] D.S.Johnson. Near-optimal bin packing algorithms. PhD Thesis, 1973.

[21] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM
Journal on Computing, 3(4):299-325, 1974.

[22] K. Junosza-Szaniawski, P. Rzazewski, ]. Sokét, and K. Wesek. Online coloring and
L(2,1)-labeling of unit disk intersection graphs. SIAM Journal on Discrete Mathe-
matics, To appear.

[23] H. A. Kierstead. The linearity of first-fit coloring of interval graphs. SIAM Journal
on Discrete Mathematics, 1(4):526-530, 1988.

[24] H. A. Kierstead and Jun Qin. Coloring interval graphs with first-fit. Discrete
Mathematics, 144(1):47 — 57, 1995.

[25] Henry A. Kierstead, David A. Smith, and William T. Trotter. First-fit coloring on
interval graphs has performance ratio at least 5. European Journal of Combinatorics,
51:236-254, 2016.



91

[26] Henry A. Kierstead and William T. Trotter. An extremal problem in recursive
combinatorics. In 12th Southeastern Conference on Combinatorics, Graph Theory and
Computing, Baton Rouge, LA, USA, March 1981. Proceedings, vol. II, volume 33 of
Congressus Numerantium, pages 143-153, 1981.

[27] M. Kiyomi, S. Kijima, and T. Uno. Listing chordal graphs and interval graphs.
In Graph-Theoretic Concepts in Computer Science, pages 68-77, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[28] N. Korte and R. Mohring. An incremental linear-time algorithm for recognizing
interval graphs. SIAM Journal on Computing, 18(1):68-81, 1989.

[29] EM. Liang. A lower bound for on-line bin packing. Inform. Process. Lett., 10:76-79,
1980.

[30] G.S. Lueker and K.S. Booth. A linear time algorithm for deciding interval graph
isomorphism. J. ACM, 26(2):183-195, 1979.

[31] N.S.Narayanaswamy and R. Subhash Babu. A note on first-fit coloring of interval
graphs. Order, 25(1):49-53, 2008.

[32] NS Narayanaswamy. Dynamic storage allocation and on-line colouring interval
graphs. In COCOON 2004: 10th Annual International Conference on Computing and
Combinatorics, Jeju Island, Korea, August 2004. Proceedings, volume 3106 of Lecture
Notes in Computer Science, pages 329-338, 2004.

[33] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi Varadarajan. Buffer minimiza-
tion using max-coloring. In Proceedings of the Fifteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA "04, pages 562-571, Philadelphia, PA, USA,
2004. Society for Industrial and Applied Mathematics.

[34] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi R. Varadarajan. Max-coloring
and online coloring with bandwidths on interval graphs. ACM Transactions on
Algorithms, 7(3):35:1-35:21, 2011.

[35] FE. S. Roberts. Indifference graphs. In Proof Techniques in Graph Theory, F. Harary
(Ed.), pages 139-146. Academic Press, 1969.

[36] T. Saitoh, Y. Otachi, K. Yamanaka, and R. Uehara. Random generation and enu-

meration of bipartite permutation graphs. Journal of Discrete Algorithms, 10:84-97,
2012.

[37] T. Saitoh, K. Yamanaka, M. Kiyomi, and R. Uehara. Random generation and enu-
meration of proper interval graphs. IEICE Transactions on Information and Systems,
E93.D(7):1816-1823, 2010.

[38] J. Sylvester. On a point in the theory of vulgar fractions. American Journal of
Mathematics, 3(4):332-335, 1880.

[39] R. Uehara T. Saitoh, M. Kiyomi. Simple efficient algorithm for mpg-tree of an
interval graph. IEICE Technical Report, 107(127):49-54, 2007.



92 Bibliography

[40] R. Uehara. Canonical data structure for interval probe graphs. In R. Fleischer
and G. Trippen, editors, Algorithms and Computation, pages 859-870, Berlin, Hei-
delberg, 2005. Springer Berlin Heidelberg.

[41] André van Vliet. Lower bound and upper bounds for on-line bin packing and
scheduling algorithms, ph.d. thesis. Tinbergen Institute Research Series, 93.

[42] André van Vliet. An improved lower bound for on-line bin packing algorithms.
Inf. Process. Lett., 43(5):277-284, 1992.

[43] K. Yamazaki, T. Saitoh, M. Kiyomi, and R. Uehara. Enumeration of nonisomorphic
interval graphs and nonisomorphic permutation graphs. In WALCOM: Algorithms
and Computation, pages 8-19, Cham, 2018. Springer International Publishing.

[44] K. Yamazaki, T. Saitoh, M. Kiyomi, and R. Uehara. Enumeration of nonisomor-
phic interval graphs and nonisomorphic permutation graphs. Theoretical Computer
Science, 2019.



	Introduction
	Preliminaries
	Online Interval Coloring with Bandwidths
	Introduction
	Previous work
	Our result

	Presenter strategy
	Strategy description
	Strategy analysis
	Scalable strategies
	Experimental results

	Unit Intervals

	Different Interval Graph Representations in Online Unit Interval Coloring
	Introduction
	Previous work
	Our results

	Upper Bounds
	Lower Bounds
	Graph Representation
	Proper Interval Representation
	Unit Interval Representation


	Online Interval Coloring of Short Intervals
	Introduction
	Our results

	Algorithm
	Lower Bounds
	Warm-up
	The 5/3 Lower Bound
	The 7/4 Lower Bound
	The 5/2 Lower Bound

	Open Problems

	FirstFit in Online Interval Coloring of Short Intervals with restricted Bandwidths
	Introduction
	Our Results

	FirstFit Online -Interval Coloring with Bandwidths.
	FirstFit Online -Interval Coloring with [,]-Bandwidths.
	FirstFit Online Unit Interval Coloring with Bandwidths.
	FirstFit Online Unit Interval Coloring with [0,]-Bandwidths.
	Open problems

	Efficient Enumeration of Non-isomorphic Interval Graphs
	Introduction
	Previous work
	Our results

	Preliminaries
	PQ-trees
	MPQ-trees
	Known results

	Canonical MPQ-tree
	Classification of Interval Edges
	Both vertices belong to the same P-node
	Both vertices belong to the same Q-node
	Vertices in different nodes.

	Listing Interval Edges
	The Enumeration Algorithm
	Performance

	Bibliography

