Transitive dendrite map with zero entropy

Tytuł:
Transitive dendrite map with zero entropy
Czasopismo:
Rok:
2017

Opis:
Hoehn and Mouron [Hierarchies of chaotic maps on continua. Ergod. Th. & Dynam. Sys.34 (2014), 1897–1913] constructed a map on the universal dendrite that is topologically weakly mixing but not mixing. We modify the Hoehn–Mouron example to show that there exists a transitive (even weakly mixing) dendrite map with zero topological entropy. This answers the question of Baldwin [Entropy estimates for transitive maps on trees. Topology 40(3) (2001), 551–569].

Strony:
2077-2083

Tom (seria wydawnicza):
37 (7)

Numer DOI:
10.1017/etds.2015.136

Link:
http://dx.doi.org/10.1017/etds.2015.136

Access:
ZAMKNIĘTY