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This thesis studies problems related to the quaternionic Monge-Ampere equation. There are
two main themes: 1. the Dirichlet problem for the quaternionic Monge-Ampeére equation on do-
mains in affine space H", and 2. the quaternionic Monge-Ampere equation on compact manifolds
which are hyperkahler with torsion (HKT).

The thesis opens with a very detailed and carefully written introduction to quaternionic ge-
ometry and the Moore determinant (Chapters 1-3), fixing his conventions carefully (these are not
consistent throughout the literature), and giving plenty of intuition from the real and complex
cases. I found these introductory chapters really pleasant to read, and was happy to finally find a
place where all the “optimal” conventions are sorted out carefully.

Dirichlet problem for the quaternionic Monge-Ampeére equation on domains in H"

In Chapter 4 the author goes on to define the quaternionic Monge-Ampere operator
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for a real-valued C? function v on a domain in H”. In analogy with the complex case, he interprets
this in terms of the top wedge product
(00 u)".

Functions for which the form 00 u is semipositive are then quaternionic plurisubharmonic (qpsh),
and mimicking the approach of Bedford-Taylor one can define M Ag(u) for all u which are qpsh
and locally bounded.

With this, one can then consider the Dirichlet problem as follows. Let D C H" be a smooth
bounded domain. One says that D is strictly quaternionic pseudoconvex if it admits a defining func-
tion which is strictly plurisubharmonic in the quaternionic sense. For such domains, the Dirichlet
problem reads

{MAH(u) — fdVol in D, Q)

u=¢ ondD,

where u € C°(D) is qpsh in D, f > 0 has some integrability properties and ¢ € C°(9D). Alesker
and Harvey-Lawson had solved this Dirichlet problem when f is continuous. Later Wan extended
this to f € LY(D) for ¢ > 4. The main result of Chapter 5 is that the Dirichlet problem can be
solved with f merely in LY(D),q > 2, and this threshold is sharp. Furthermore, he also shows that
gpsh functions are locally in LP for any p < 2, and again this threshold is sharp (and surprisingly, it
is different from the integrability threshold of the fundamental solution of the quaternionic Monge-
Ampere operator, which is 2n). The proof of the solvability of the Dirichlet problem is ingenious
and clean, and as mentioned it gives the optimal result in terms of the integrability of the RHS.

Furthermore, in Chapter 6 it is shown that if in addition ¢ € C*(dD) and f is bounded near
0D, then the solution v is Holder continuous, with explicit Holder exponent.



Quaternionic Monge-Ampere equation on compact HKT manifolds

When working on compact manifolds (without boundary), there are several possible notions
of what a “quaternionic” manifold should be, and the author does an excellent job at summa-
rizing them. Arguably the most stringent one is the notion of a hyperkahler manifold, which is
simply-connected and has a Riemannian metric which is K&hler with respect to a triple of complex
structures that satisfy the quaternionic relations. It turns out that hyperkahler geometry is ex-
tremely rich, and has deep connections with algebraic geometry, but (up to complex deformations)
very few examples are known.

A weaker notion is called HKT (“hyperkahler with torsion”), which originated in mathematical
physics, and has also been much studied in differential geometry. And an even weaker notion is
that of a hypercomplex manifold, which simply admits a triple of complex structures that satisfy
the quaternionic relations.

A global version of the above quaternionic Monge-Ampere operator is then introduced on a
general hypercomplex manifold in Chapter 7, which can be written as

(Q+ 90,u)",

where 2 is a “fundamental (2, 0)-form” of a fixed hyperhermitian metric. The author then proposes
a bold generalization of the Calabi-Yau theorem: on any compact hyperhermitian manifold, given
any smooth function f there is a unique smooth function u (up to addition of a constant) and a
unique b € R such that Q + 90 u > 0 and

(Q + 0u)" = e/ T,

When the metric is HKT with trivial canonical bundle, this conjecture was first proposed by
Alesker-Verbitsky, and for general HKT manifolds this was posed by Alesker-Shelukhin. These
authors devoted a lot of work towards proving this conjecture, but it was only solved in general
by Alesker in the very restrictive case of flat hyperkahler manifolds. In general, the conjecture is
known to be reduced to proving a priori C** bounds for u, for some o > 0. In 2017, Alesker-
Shelukhin gave a very long and complicated proof of the a priori C° bound for u when the manifold
is HKT. The main result of Chapter 8 is a new and much better proof of this result, which also
allows for a weaker dependence on the RHS function f, by adapting some ideas of Cherrier and
Tosatti-Weinkove from the complex case.

I should also remark that after this thesis was submitted, the author with S. Dinew succeeded
in proving the above conjecture for all hyperkihler manifolds, using the above C° bound as a first
step and deriving the required C?® bounds. This is a remarkable achievement.

Overall opinion

This thesis contains many beautiful original results, which show an impressive mastery of this
difficult subject as well as great creative power. In particular, the thesis fulfills the requirement
of “an original solution to the research problem, an original solution in scope of the application of
one’s research results in an economic or social domain, or an original artistic achievement.” In fact,
I believe this is one of the best theses in this field in the past few years, and I highly recommend
the candidate for the degree of Doctor in Mathematics (PhD) with distinction (cum laude).



Some very minor corrections

P.25, change “competitive convention” to “competing convention”
P.36, change “in dept” to “in depth”

Definition 4.2.1, is f here really R-valued, or are —oo-values also allowed, like in the complex
case?

P.78, change “spontaneous” to “sporadic”



