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Introduction

In this thesis we investigate selected properties of base-b expansions of terms of in-
teresting number sequences, including factorials, linear recurrence sequences, poly-
nomials and p-adic analytic functions evaluated at consecutive integers. Problems of
this type have been widely studied in the literature, with emphasis put on calculating
the p-adic valuation νp for a prime p. (In some cases the investigation can also been
extended to the �b-adic valuation� νb for any base b, where νb(n) = sup{v : bv | n}.)
Most likely, the earliest result of this type is the famous formula for νp(n!) due to
Legendre [47], dating back to the beginning of the XIX century. Since then, numer-
ous other sequences of combinatorial signi�cance, such as binomial coe�cients and
Stirling numbers of the �rst and second kind, have been an object of interest in this
regard. The study of p-adic valuations of linear recurrence sequences seems to have
grown in popularity recently, starting with the result of Lengyel [48], who fully charac-
terized the p-adic valuation of Fibonacci and Lucas numbers. Among other interesting
examples, we would like to mention the paper of Bell [8] on p-regularity of the p-adic
valuation of a polynomial evaluated at consecutive integers, and a generalization to
p-adic analytic functions by Shu and Yao [68].

Another interesting type of properties describing base-b expansions can be collec-
tively called the �last nonzero digits�. In particular, the sequence (`b(n!))n≥0, describ-
ing the last nonzero digit in base-b expansion of n!, has recently gained the attention of
several authors. The current line of research was initiated by the work of Deshouillers
and Ruzsa [29] on the especially interesting case b = 12. They proved that the se-
quence (`12(n!))n≥0 coincides with a 3-automatic sequence on a set of asymptotic
density 1, which allowed them to compute how often each possible value occurs in the
sequence. The question of whether (`12(n!))n≥0 is automatic itself was answered neg-
atively by Deshouillers [27], while a criterion for a general base b was later provided
by Lipka [51].

Similar results on last nonzero digits of expressions other than n! are rather scat-
tered throughout the literature. In this thesis we attempt to develop a systematic
approach to the topic. We consider the function Lb(n), which describes the number
obtained by deleting all the trailing zeros in the base-b representation of n, as well as
`b,d(n), which denotes the integer represented by the last block of d digits in Lb(n).
Since the whole base-b expansion can be retrieved from the knowledge of Lb and νb
and vice versa, the investigation of last nonzero digits and valuations can be seen
as mutually complementary. As it turns out, the functions `b,d and Lb are also, in
a sense, compatible with automatic and regular sequences, respectively. In this thesis
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we show that for many naturally occurring sequences (sn)n≥0, it is possible (but not
trivial) to settle whether (`b,d(sn))n≥0 is automatic and (Lb(sn))n≥0 is regular. The
results usually follow from the interplay between the arithmetic behavior of sn and
the properties of automatic and regular sequences.

The thesis consists of four chapters whose contents can be outlined as follows.
Chapter 1 provides theoretical background on the main concepts and tools used
throughout the entire thesis. The �rst part of the chapter is focused on automatic
and regular sequences and their basic properties. The second part is devoted to p-adic
numbers and elementary p-adic analysis.

The remaining chapters contain original research of the author. In Chapter 2 we
introduce precise de�nitions of the functions Lb and `b,d and survey some of their
fundamental properties. Based on the author's paper [70], we then classify the bases
b such that (`b,d(n!))n≥0 is an automatic sequence (or coincides with an automatic
sequence on a set of density 1). This is done by an explicit construction of a uniform
morphism generating the sequence. Using this description, we calculate the frequency
with which each possible value occurs in the sequence and its subsequences along
arithmetic progressions. In this way we extend and generalize many other results
by authors such as Kakutani, Dekking, Dresden, Deshouillers, Luca, Ruzsa, Lipka
[43, 25, 31, 28, 29, 26, 27, 51].

Chapter 3 is based on yet unpublished work of the author. For a given base b
we consider last nonzero digits of tuples f = (f1, . . . , fs) of pi-adic analytic functions
evaluated at consecutive integers, where pi ranges over the prime factors of b. In
particular, this entails polynomials and linear recurrence sequences. The speci�c
problem and the approach used was directly inspired by the already mentioned work
of Bell, Shu, and Yao [8, 68], concerning p-regularity of (νp(f(n)))n≥0 for p prime.
We fully characterize automaticity of (`b,d(f(n)))n≥0 and regularity of (Lb(f(n)))n≥0
for any b, d and f . The results are illustrated by a number of various examples.

In Chapter 4 we consider generalized Fibonacci sequences (tn(k))n≥0, de�ned by
a linear recurrence of order k. The direct motivation behind our work on this topic
are the results by Lengyel and Marques [49, 50] on the 2-adic valuation of so-called
�Tribonacci�, �Tetranacci�, and �Pentanacci� sequences (k = 3, 4, 5). Following the
paper of the author [69], we extend their method in order to compute ν2(tn(k)) for
any even k ≥ 4. We also derive a partial formula in the case of k ≥ 5 odd, thus
giving an alternative elementary proof of the result by Young [73]. Subsequently, we
apply the obtained formula to completely solve two Diophantine equations containing
the terms tn(k) with �xed even k ≥ 4. The �rst equation involves expressing m! as
a product of a �xed number of terms tn(k), while the second one is the problem
of representation of tn(k) by certain ternary quadratic forms. The approach used
to solve the latter equation also demonstrates another application of the methods
concerning last nonzero digits, developed in the earlier chapters.

Acknowledgements. I would like to express my deepest gratitude to Maciej
Ulas and Jakub Byszewski for their guidance, many inspiring discussions and, most
of all, endless patience. Without their support completing this dissertation would not
have been possible.
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List of symbols

Below we give a list of symbols used throughout the thesis which are potentially
ambiguous.

N the set of nonnegative integers {0, 1, . . .}

Zp the ring of p-adic integers

expp the p-adic exponential

logp the p-adic logarithm

#A the cardinality of the set A

gcd(a1, . . . , an) the greatest common divisor of the integers a1, . . . , an

lcm(a1, . . . , an) the least common multiple of the integers a1, . . . , an

a mod m the integer r lying in the set {0, 1, . . . ,m− 1} such that a ≡ r
(mod m)

ordm(a) the multiplicative order of a modulo m

bxc the �oor of x ∈ R, that is, the largest integer n such that n ≤ x

R[X] the ring of polynomials over a commutative ring R

O(·) for real-valued nonnegative functions f, g we write f(x) =
O(g(x)) if there exist positive constants x0, C such that f(x) ≤
Cg(x) for all x ≥ x0

Ω(·) for real-valued nonnegative functions f, g we write f(x) =
Ω(g(x)) if g(x) = O(f(x))



1. Preliminaries

In this chapter we survey some important notions and results, which will be useful
throughout the thesis. The topics covered in the following sections include automatic
and regular sequences as well as p-adic analysis.

1.1 Automatic and regular sequences

The notion of an automatic sequence �rst appeared under the name �uniform tag
sequence� in the in�uential paper of Cobham [19] on the theory of computation.
Since then, a lot of connections have been discovered between automatic sequences
and other areas of mathematics, in particular number theory. A prominent example
is the theorem of Christol [16], which relates automatic sequences to algebraic power
series in positive characteristic. Among many generalizations of automatic sequences,
particularly signi�cant are regular sequences, introduced by Allouche and Shallit in
[3] (see also [5]). Below we give a basic overview of the theory of automatic and
regular sequences, mainly based on the monograph of Allouche and Shallit [4].

1.1.1 Basic de�nitions

We begin by introducing some fundamental notation and terminology as in [4, Section
1.1]. Let Σ be a nonempty set of letters, called an alphabet. The set of all �nite words
created from letters in Σ, together with the empty word ε, is denoted by Σ∗. This
set equipped with the operation of concatenation of words is a monoid. The length
|w| of a word w ∈ Σ∗ is the number of letters in w. If a ∈ Σ and w ∈ Σ∗, then |w|a
denotes the number of occurences of a in w. We also consider in�nite words of the
form a = a0a1 · · · with a0, a1, . . . ∈ Σ, which can be identi�ed with sequences (an)n≥0.

Following [4, Sections 4.1, 4.3], we proceed to give the de�nition of a simple model
of computation, called a deterministic �nite automaton with output (DFAO). Consider
the following:

� a �nite set of states Q,

� a �nite input alphabet Σ,

� a transition function δ : Q× Σ→ Q,

� an initial state q0 ∈ Q,
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� an output alphabet ∆,

� an output function τ : Q→ ∆.

We assume that the sets Q,Σ,∆ are nonempty.

De�nition 1.1. A deterministic �nite automaton with output is a sextuple

A = (Q,Σ, δ, q0,∆, τ).

A DFAO A de�nes a �nite-state function f : Σ∗ → ∆ in the following manner:
A takes as input a word w ∈ Σ∗ and, starting from the initial state q0, we move
between states by means of the transition function δ according to the consecutive
letters of w read from left to right. After the last letter is read, the DFAO returns
the output from the �nal state reached. In order to write this formally, we extend
the de�nition of δ to Q× Σ∗ by δ(q, ε) = q and

δ(q, w1 · · ·wl) = δ(· · · δ(δ(q, w1), w2) · · · , wl)

for all q ∈ Q and w1, . . . , wl ∈ Σ. Then at input w the DFAO returns the output

f(w) = τ(δ(q0, w)).

As seen in Example 1.1 below, a DFAO can be represented as a labelled multigraph
whose vertices correspond to the states q ∈ Q and are labelled by their names and
output, written in the form q/τ(q). The edges are de�ned by the transition function
δ and labelled by the letters in Σ. More precisely, there is an edge from q to q′ with
label b ∈ Σ if and only if δ(q, b) = q′. The initial state q0 is indicated by an additional
arrow labelled �start�.

Example 1.1. Let Q = {q0, q1},Σ = {0, 1},∆ = {1,−1}, and de�ne the transition
and output functions as follows:

δ(q0, 0) = δ(q1, 1) = q0, δ(q0, 1) = δ(q1, 0) = q1,

τ(q0) = 1, τ(q1) = −1.

The corresponding graph is displayed in Figure 1.1.

q0/1start q1/− 1

0

1

1

0

Figure 1.1: An example of a 2-DFAO

For example, we �nd that at input 011001 the DFAO returns −1. More generally,
at input w ∈ Σ∗, the DFAO computes the value (−1)|w|1 .
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In order to de�ne automatic sequences we will now consider a class of �nite au-
tomata for which the input alphabet Σ is the set of digits in a given base (see [4,
Chapter 5]). More precisely, let k ≥ 2 be an integer and put Σk = {0, 1, . . . , k − 1}.
We call a DFAO with input alphabet Σk a k-DFAO. For w ∈ Σ∗k let [w]k denote the
integer represented in base k by w, where the leftmost digit is the most signi�cant.
More precisely, set [ε]k = 0 and for w = wl · · ·w0 with w0, . . . , wl ∈ Σ put

[w]k =
l∑

i=0

wik
i.

Note that adding any number of leading zeros to w does not a�ect the value [w]k.
Conversely, let (n)k denote the base-k expansion of n ≥ 0 without leading zeros. We
are now ready to give the main de�nition of this section.

De�nition 1.2. A sequence (an)n≥0 is called k-automatic if there exists a k-DFAO
A = (Q,Σk, δ, q0,∆, τ) such that

an = τ(δ(q0, w))

for all n ≥ 0 and w ∈ Σ∗k such that [w]k = n.

We say that a sequence is automatic if it is k-automatic for some k ≥ 2, and
otherwise nonautomatic. It is clear that an automatic sequence can only take a �nite
number of values.

Example 1.2. Consider the famous Thue�Morse sequence (tn)n≥0, de�ned by

tn = (−1)s2(n), (1.1)

where s2(n) is the sum of binary digits of n (another variant tn = s2(n) mod 2 is often
considered). This is a 2-automatic sequence, since it is generated by the 2-DFAO in
Figure 1.1 in the following way:

tn = τ(δ(q0, w))

for all n ≥ 0 and w ∈ Σ∗2 such that [w]2 = n.

It is possible to relax the condition in the de�nition of an automatic sequence and
assume that there exists a k-DFAO A = (Q,Σk, δ, q0,∆, τ) such that for all n ≥ 0 we
have

an = τ(δ(q0, (n)k)).

In fact, this modi�cation yields the same class of sequences, as per [4, Theorem 5.2.1].
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1.1.2 Uniform morphisms

Based on [4, Chapter 6], in this subsection we give an equivalent de�nition of auto-
matic sequences in terms of �xed points of uniform morphisms. Similarly as before,
let Σ and ∆ be �nite alphabets. A map ϕ : Σ∗ → ∆∗ is called a morphism if

ϕ(vw) = ϕ(v)ϕ(w)

for all v, w ∈ Σ∗. A morphism is uniquely determined by its values ϕ(a) for a ∈ Σ
and can be naturally extended to in�nite words.

De�nition 1.3. Let k ≥ 1 be an integer. We say that a morphism ϕ is k-uniform if
|ϕ(a)| = k for all a ∈ Σ. A 1-uniform morphism is called a coding.

In this thesis we will only consider uniform morphisms, however the discussion
below can also be extended to arbitrary morphisms. Assume that ϕ is a k-uniform
morphism with k ≥ 2 and that Σ = ∆, so that we can iterate ϕ. Let ϕ0 be the
identity on Σ∗ and de�ne ϕn+1(w) = ϕ(ϕn(w)) for all integers n ≥ 0 and w ∈ Σ∗.
Then ϕ is said to be prolongable on a ∈ Σ if there exists a word x ∈ Σ∗ of length
k − 1 such that ϕ(a) = ax. In such a case the sequence of words a, ϕ(a), ϕ2(a), . . .
converges to the in�nite word

ϕω(a) = a xϕ(x)ϕ2(x) · · ·

in the sense that for each n ≥ 0 the word ϕn(a) is a pre�x of ϕω(a) and the lengths
|ϕn(a)| tend to in�nity. The word ϕω(x) is the unique �xed point of ϕ starting
with a. The following theorem of Cobham [19] (see also [4, Theorem 6.3.2]) gives
a characterization of automatic sequences through uniform morphisms.

Theorem 1.1 (Cobham). A sequence a = (an)n≥0 with values in ∆ is k-automatic
if and only if there exists a k-uniform morphism ϕ : Σ∗ → Σ∗ prolongable on some
a ∈ Σ and a coding τ : Σ∗ → ∆∗ such that

a = τ(ϕω(a)).

In short, one can say that a is the image, under a coding, of a �xed point of
a k-uniform morphism. We point out that a sequence b = (bn)n≥0 with values in Σ
is a �xed point of a k-uniform morphism ϕ if and only if for all n ≥ 0 we have

ϕ(bn) = bknbkn+1 · · · bkn+k−1, (1.2)

as proved in [4, Lemma 6.3.1]. Then by Theorem 1.1 any sequence a = (an)n≥0 of
the form a = τ(b), with τ a coding, is a k-automatic sequence.

As a continuation of Examples 1.1 and 1.2 we construct a 2-uniform morphism
which yields the Thue�Morse sequence t = (tn)n≥0.

Example 1.3. The formula (1.1) gives t0 = 1 and

t2n = tn, t2n+1 = −tn (1.3)
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for all n ≥ 0. De�ne the 2-uniform morphism ϕ : {1,−1}∗ → {1,−1}∗ by

ϕ(1) = 1 − 1, ϕ(−1) = −1 1.

Then by (1.2) it is clear that

t = ϕω(1) = ϕ(t).

Alternatively, the form of ϕ could be derived from the 2-DFAO in Figure 1.1 by
identifying the states q0, q1 with their respective output 1,−1 and putting ϕ(q) =
δ(q, 0)δ(q, 1) for q = q0, q1 (this is in line with the proof of Theorem 1.1).

1.1.3 The k-kernel and regular sequences

In this subsection we give yet another characterization of k-automatic sequences using
the notion of a k-kernel, whose natural generalization leads to the de�nition of regular
sequences. Let a = (an)n≥0 be an in�nite sequence and let k ≥ 2 be an integer.

De�nition 1.4. The k-kernel of the sequence a = (an)n≥0 is the set

Kk(a) = {(akjn+i)n≥0 : j ≥ 0, 0 ≤ i ≤ kj − 1}.

The following result (see [4, Theorem 6.6.2]) can be used as an equivalent de�nition
of automatic sequences.

Theorem 1.2. The sequence a = (an)n≥0 is k-automatic if and only if Kk(a) is �nite.

Example 1.4. The 2-kernel of the Thue�Morse sequence t = (tn)n≥0 is

Kk(t) = {(tn)n≥0, (t2n+1)n≥0},

which follows straight from the relations (1.3).

Allouche and Shallit [3] generalized this description in order to encompass a num-
ber of interesting sequences which take in�nitely many distinct values (and thus are
not automatic). Let R be a Z-module and let k ≥ 2 be an integer. We can treat the
sequences in Kk(a) as elements of the Z-module RN.

De�nition 1.5. A sequence (an)n≥0 with values in R is k-regular if the Z-module
generated by its k-kernel is �nitely generated.

We say that a sequence is regular if it is k-regular for some k ≥ 2, and otherwise
nonregular.

Example 1.5. Let sk(n) be the sum of base-k digits of an integer n ≥ 0. Then we
have

sk(k
jn+ i) = sk(n) + sk(i)

for all integers n ≥ 0, j ≥ 0, and i such that 0 ≤ i ≤ kj − 1. It follows that
the Z-module generated by the k-kernel of (sk(n))n≥0 is generated by two elements:
(sk(n))n≥0 and the constant sequence with all terms equal to 1. Hence, the considered
sequence is k-regular.
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The next result [3, Theorem 2.3] exhibits a connection between regular and auto-
matic sequences.

Theorem 1.3. A sequence is k-regular and takes on only �nitely many values if and
only if it is k-automatic.

1.1.4 Properties of automatic and regular sequences

We now give some results on automatic and regular sequences, which will be useful
in the later chapters. The proofs for automatic sequences can mostly be found in
[4, Sections 5.4 and 6.8], and for regular sequences � in [3, Section 2] (if not, we
provide a reference). In the results below whenever a sequence is assumed or claimed
to be regular, we implicitly assume that the set containing its terms is a ring with
the structure of a Z-module.

We start with the trivial case of eventually periodic sequences. We call a sequence
(an)n≥0 eventually periodic if there exists an integer T > 0 such that an+T = an
for all n su�ciently large. We refer to any such T as a period of (an)n≥0. Unless
speci�ed otherwise, throughout the thesis we do not assume that T is minimal with
this property.

Theorem 1.4. Let (an)n≥0 be an eventually periodic sequence. Then it is k-automatic
(and thus k-regular) for all k ≥ 2.

In what follows we assume that k ≥ 2 is a �xed integer.

Theorem 1.5. Let t ≥ 1 be an integer. Then the sequence (an)n≥0 is k-automatic
(resp. k-regular) if and only if it is kt-automatic (resp. kt-regular).

In the automatic case this is [4, Theorem 6.6.4].
On the other hand, a remarkable result by Cobham [18] shows that when k and

l are multiplicatively independent, then only eventually periodic sequences can be
simultaneously k- and l-automatic. Recall that two positive integers k, l are said to
be multiplicatively independent if their only common integer power is 1.

Theorem 1.6 (Cobham). Let k, l ≥ 2 be multiplicatively independent integers. If
a sequence (an)n≥0 is both k-automatic and l-automatic, then it is eventually periodic.

This was later generalized by Bell [7] to regular sequences. From his results we
can extract the following.

Theorem 1.7. Let k, l ≥ 2 be multiplicatively independent integers. If a sequence
(an)n≥0 is both k-regular and l-regular, then it is k-regular for all k ≥ 2 and satis�es
a linear recurrence.

We now focus on simple closure properties of automatic and regular sequences.

Theorem 1.8. Let (an)n≥0 di�er from a k-automatic (resp. k-regular) sequence by
only a �nite number of terms. Then (an)n≥0 is also k-automatic (resp. k-regular).
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The next result relates k-automaticity (k-regularity) of a sequence and its subse-
quences along arithmetic progressions.

Theorem 1.9. If the sequence (an)n≥0 is k-automatic (resp. k-regular), then for all
integers b, c ≥ 0 the sequence (abn+c)n≥0 is k-automatic (resp. k-regular). Conversely,
let b ≥ 0 be an integer and let (an)n≥0 be a sequence such that (abn+c)n≥0 is k-
automatic (resp. k-regular) for all c = 0, 1, . . . , b − 1. Then (an)n≥0 is k-automatic
(resp. k-regular).

Remark 1.10. By [3, Remark on p. 169], if we assign arbitrary values (for example
zeros) to the terms an with negative indices, then the claim of Theorem 1.9 holds for
any c ∈ Z.

The following result shows that functions of k-automatic sequences are also k-
automatic.

Theorem 1.11. Let (an)n≥0, (bn)n≥0 be k-automatic sequences with values in ∆,∆′,
respectively, and let Λ be a �nite set. Then the following sequences are also k-
automatic:

(i) (ρ(an))n≥0, where ρ : ∆∗ → Λ∗ is any coding;

(ii) (an, bn)n≥0;

(iii) (f(an, bn))n≥0, where f : ∆×∆′ → Λ is any function.

As a corollary, if (an)n≥0, (bn)n≥0 take values in the same ring and are k-automatic,
then (an+bn)n≥0 and (anbn)n≥0 are k-automatic as well. This is also true for k-regular
sequences.

Theorem 1.12. Let (an)n≥0, (bn)n≥0 be k-regular sequences taking values in a com-
mutative ring R and let λ ∈ R. Then the sequences (λan)n≥0, (an + bn)n≥0 and
(anbn)n≥0 are also k-regular.

Treating the terms of the sequence (n)n≥0 as elements of a commutative ring R, we
can easily check that this sequence is k-regular for every k ≥ 2. Using Theorem 1.12
we can deduce that a similar statement holds for polynomials evaluated at consecutive
integers.

Corollary 1.13. Let R be a commutative ring and f ∈ R[X]. Then the sequence
(f(n))n≥0 is k-regular for every k ≥ 2.

We point out that an arbitrary function of two k-regular sequences may not be
k-regular (see for example [3, pp. 168�169]).

The following two results are an immediate consequence of the de�nition of a k-
regular sequence, however we include them for lack of a better reference.

Proposition 1.14. Let (an)n≥0, (bn)n≥0 be sequences taking values in Z-modules
R,R′, respectively. Then the sequence of pairs (an, bn)n≥0 is k-regular if and only if
(an)n≥0, (bn)n≥0 are both k-regular.
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Proposition 1.15. Let R,R′ be Z-modules and let φ : R→ R′ be a homomorphism.
If (an)n≥0 is a k-regular sequence with values in R, then (φ(an))n≥0 is also a k-regular
sequence.

Proposition 1.15 in conjunction with Theorem 1.3 implies the following corollary.

Corollary 1.16. Let (an)n≥0 be a k-regular sequence of integers. Then for all integers
m ≥ 1 the sequence (an mod m)n≥0 is k-automatic.

It turns out that regular sequences exhibit at most polynomial growth.

Theorem 1.17. Let (an)n≥0 be a k-regular sequence with values in C. Then there
exists a constant C > 0 such that |an| = O(nC).

Finally, we give an interesting property of automatic sequences taking integer
values; this is [4, Corollary 6.9.3].

Theorem 1.18. Let (an)n≥0 be a k-automatic sequence with values in Z and let l ≥ 2
be an integer. Then the following sequences are also k-automatic:

(i) the running sum sequence ((
∑n

m=0 am) mod l)n≥0;

(ii) the running product sequence ((
∏n

m=0 am) mod l)n≥0.

1.1.5 The frequencies of letters

Following the description in [4, Chapter 8], we demonstrate how to compute the
frequencies of letters in automatic sequences. Let a = (an)n≥0 be an in�nite word
made from letters in Σ and let c ∈ Σ be a �xed letter. We de�ne the frequency of c
in a as the limit

Freqa(c) = lim
n→∞

|a0a1 · · · an−1|c
n

= lim
n→∞

#{0 ≤ m ≤ n− 1 : am = c}
n

,

if it exists. In other words, Freqa(c) is the natural density of the set {n ≥ 0 : an = c}.
The frequency of a letter in an in�nite word or even in an automatic sequence may
not exist, as shown in [4, Example 8.1.2]. We will however consider a class of auto-
matic sequences generated by primitive morphisms (de�ned below) for which all the
frequencies exist.

Assume that the sequence (an)n≥0 with values in Σ = {c1, . . . , cd} is a �xed point
of a k-uniform morphism ϕ : Σ∗ → Σ∗. The morphism ϕ is called primitive if there
exists an integer n ≥ 1 such that for all c ∈ Σ the word ϕn(c) contains all letters
from Σ. We associate with ϕ the incidence matrix M(ϕ) = [mi,j]1≤i,j≤d, where
mi,j = |ϕ(cj)|ci . One can verify that M(ϕ)n = M(ϕn), and thus the morphism ϕ
is primitive if and only if M(ϕ) is primitive, i.e., there exists an integer n ≥ 1 such
that M(ϕ)n has all entries positive. Under the assumption of primitivity, the matrix
M(ϕ) has a positive eigenvalue r of multiplicity one such that any other complex
eigenvalue λ satis�es |λ| ≤ r and there exists an eigenvector with all entries positive
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corresponding to r (see [42, Theorem 8.4.4]). This eigenvalue is called the Perron�
Frobenius eigenvalue. In particular, if a primitive matrix is row- or column-stochastic,
then by [4, Theorem 8.3.13] its Perron�Frobenius eigenvalue equals 1. The following
result ([4, Theorem 8.4.7]) provides a simple way to compute the frequencies of letters
using the Perron�Frobenius eigenvalue of M(ϕ).

Theorem 1.19. Let a = (an)n≥0 be a �xed point of a primitive uniform morphism
ϕ. Then the frequencies of all letters exist and are nonzero. Furthermore, the vector
of frequencies of the letters in a is the positive normalized eigenvector corresponding
to the Perron�Frobenius eigenvalue of the incidence matrix M(ϕ).

As a consequence, if M(ϕ) is a row-stochastic matrix multiplied by a positive
constant, then Freqa(ci) = 1/d for all i = 1, . . . , d.

We point out that if b = (bn)n≥0 is a coding of a, then the computation of the
frequencies of letters in b is almost immediate once the frequencies of letters in a are
known.

1.2 p-adic numbers

p-adic numbers were �rst introduced by Hensel near the end of the nineteenth century.
They have since then evolved into a powerful tool in number theory, allowing the
study of congruences and divisibility properties by means of analytic methods. p-adic
numbers have also found applications in many other areas of mathematics and even
physics. The following presentation is based on the books of Gouvêa [37], Koblitz
[45], Robert [64], and the notes of Conrad [22, 23, 21].

1.2.1 The �eld of p-adic numbers

Let p be a �xed prime number. We start with the basic de�nitions of p-adic valuation
and p-adic norm.

De�nition 1.6. The p-adic valuation νp is de�ned for n ∈ Z by

νp(n) =

{
max{v ≥ 0 : pv|n} if n 6= 0,

+∞ if n = 0.

For n/m ∈ Q with n,m ∈ Z \ {0}, we de�ne

νp

( n
m

)
= νp(n)− νp(m).

De�nition 1.7. The p-adic norm | · |p is de�ned for x ∈ Q by

|x|p =

{
p−νp(x) if x 6= 0,

0 if x = 0.
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It can be checked that | · |p is indeed a norm. In the following two results we give
some elementary properties of the p-adic valuation and p-adic norm.

Theorem 1.20. For all x, y ∈ Q we have the following:

(i) νp(xy) = νp(x) + νp(y);

(ii) νp(x+ y) ≥ min{νp(x), νp(y)};

(iii) if νp(x) 6= νp(y), then νp(x+ y) = min{νp(x), νp(y)}.

Theorem 1.21. For all x, y ∈ Q we have the following:

(i) |xy|p = |x|p|y|p;

(ii) |x+ y|p ≤ max{|x|p, |y|p};

(iii) if |x|p 6= |y|p, then |x+ y|p = max{|x|p, |y|p}.

Property (ii) of Theorem 1.21 says that | · |p is a non-Archimedean norm on Q.
The �eld of rational numbers equipped with the metric dp(x, y) = |x− y|p is not

complete. We can however take the completion of Q with respect to dp and (uniquely)
extend νp and | · |p to the resulting �eld while retaining their properties stated above.

De�nition 1.8. The completion of Q with respect to dp is called the �eld of p-adic
numbers Qp. The set Zp = {x ∈ Qp : |x|p ≤ 1} is the ring of p-adic integers.

The family of clopen balls

B(a, r) = {x ∈ Qp : |x− a|p ≤ r}

with a ∈ Qp and r > 0 forms a basis of the topology on Qp. In particular, we have
B(0, 1) = Zp. The ring of p-adic integers Zp is a compact set and can be equivalently
de�ned as the completion of Z with respect to dp. The set N of nonnegative integers
is dense in Zp.

The elements of Qp are conveniently described through their p-adic expansions.
We can write x ∈ Qp in the form

x = · · ·+ x2p
2 + x1p+ x0 + x−1p

−1 + · · ·+ x−lp
−l,

where l ≥ 0 and the coe�cients xi are digits from the set {0, 1, . . . , p− 1}. The least
v such that xv 6= 0 is equal to νp(x). If x ∈ Zp, then the p-adic expansion of x only
contains terms with nonnegative powers of p. Reduction modulo pj with j ≥ 0 an
integer is de�ned for elements of x = · · ·+ x1p+ x0 ∈ Zp by

x mod pj = xj−1p
j−1 + · · ·+ x1p+ x0.

Arithmetic operations involving p-adic expansions can be performed in a standard
way using carries. A number x ∈ Qp is rational if and only if its p-adic expansion is
eventually periodic (see [23, Theorem 3.1]).
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We will mostly be dealing with the analytic properties of power series de�ned on Zp
with coe�cients in �nite extensions ofQp, thus it will be convenient to have a complete
and algebraically closed �eld containing Qp. We can �x an algebraic closure Qalg

p of
Qp and further extend the de�nition of | · |p and νp to Qalg

p (in a unique way). It turns
out that Qalg

p is, again, not complete. However, by taking the completion of Qalg
p with

respect to dp we obtain the �eld Cp, which is both complete and algebraically closed.
The construction of this �eld is described in [64, Chapter 3] and [45, Chapter 3] (in
the latter book this �eld is denoted by Ω). The topology of Cp can be described in
the same way as before � in terms of a basis of clopen balls.

We now discuss a generalization of the above construction of Zp and Qp with p
replaced by any integer b ≥ 2. The description is loosely based on the lecture notes
by Ershov [32, 33].

Any nonzero rational number x can be written in the form

x = bv
q

r
, (1.4)

where v, q, r are integers such that r is coprime to both q and b, and q is not divisible
by b. Moreover, such a representation is unique up to changing the sign of q and r.
We de�ne the b-adic valuation of x, denoted by νb(x), to be the number v in (1.4)
and also put νb(0) = +∞. In particular, for any integer n we have

νb(n) =

{
max{v ≥ 0 : bv|n} if n 6= 0,

+∞ if n = 0.
(1.5)

We remark that νb is not a valuation in the strict sense in the case of b composite,
since it satis�es properties (ii) and (iii) of Theorem 1.20 but only a weaker version
of property (i), namely νb(xy) ≥ νb(x) + νb(y). Nevertheless, νb gives rise to the
b-adic norm | · |b de�ned by |x|b = b−νb(x). Using this as a starting point we may
construct in the same fashion the rings Zb of b-adic integers and Qb of b-adic numbers
as completions of Z and Q with respect to | · |b. We point out that unless b is a prime
power, Qb is not a �eld (in particular, it contains zero divisors). The elements of Zb
and Qb can be represented in the form of (possibly in�nite) b-adic expansions with
digits 0, 1, . . . , b − 1. If n is a nonnegative integer, then its b-adic expansion is �nite
and coincides with the usual base-b expansion. We may reduce the elements of Zb
modulo bj with j ≥ 0 an integer in the same way as in the p-adic case.

It turns out that b-adic numbers can also be represented by tuples of p-adic num-
bers with p running over the set of prime divisors of b. Let

b = pl11 · · · plss ,

be the prime factorization of b and write bi = plii for i = 1, . . . , s. In [33] a natural
isomorphism πb between Zb and the product ring Zp1 × · · · × Zps is constructed. We
can extend it to an isomorphism between Qb and Qp1 × · · · ×Qps by setting

πb(x) = bνb(x)π(b−νb(x)x)
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for any x ∈ Qb, using the fact that b−νb(x)x ∈ Zb.
Below we list a few important properties of πb, which follow directly from the

aforementioned construction:

(i) if x ∈ Q, then πb(x) = (x, . . . , x);

(ii) if πb(x) = (y1, . . . , ys) for some x ∈ Qb, then

νb(x) = min
1≤i≤s

νbi(yi) = min
1≤i≤s

⌊
νpi(yi)

li

⌋
; (1.6)

(iii) if πb(x) = (y1, . . . , ys) for some x ∈ Zb, then x mod bj is the integer n ∈
{0, 1, . . . , bj − 1} satisfying

n ≡ yi (mod bji )

for i = 1, . . . , s.

We point out that the property (iii) can in fact be used to construct πb.
In the following chapters we will identify Zb and Qb with Zp1 × · · · × Zps and

Qp1 × · · · × Qps , respectively, through πb. All the operations will be performed on
elements of the form (y1, . . . , ys) with yi ∈ Qpi , while b-adic expansions will come up
in relation to the interpretation of certain functions describing digits. In particular,
we use (1.6) above as the de�nition of νb on the product ring Qp1 ×· · ·×Qps and (iii)
as the de�nition of reduction modulo bj on Zp1×· · ·×Zps . Moreover, due to property
(i) we can treat Q as the subring of Qp1 × · · · ×Qps via the diagonal embedding, and
simply write x instead of (x, . . . , x) to denote x rational. We do not pursue this topic
further and focus on p-adic numbers with p prime.

1.2.2 p-adic analysis

We now proceed to recall some facts from p-adic analysis, which will be used in the
later chapters. To begin with, we give a general result concerning the existence of
zeros of continuous functions in Zp, which is a consequence of the Bolzano�Weierstrass
Theorem.

Theorem 1.22. Let f : Zp → Cp be a continuous function. Then f has a zero in Zp
if and only if f has a zero modulo pm for all integers m ≥ 0, i.e., for each m ≥ 0
there exists x ∈ Zp such that |f(x)|p ≤ p−m.

Since N is dense in Zp, it follows that a continuous function f has a root in Zp
if and only if the sequence (νp(f(n)))n≥0 is not bounded from above. By arguments
similar as in classical analysis, p-adically continuous functions include polynomials
and power series (within their disc of convergence).

Below we state a version of the famous Hensel's Lemma (adapted from [21, The-
orem 4.1]), which gives an e�ective condtition for the existence of a root of a polyno-
mial with p-adic coe�cients. Here for a polynomial f ∈ Zp[X] we let f ′ denote the
derivative of f , given by the usual formula.
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Theorem 1.23 (Hensel's Lemma). Let f ∈ Zp[X] and assume that x0 ∈ Zp satis�es

|f(x0)|p < |f ′(x0)|2p.

Then there exists a unique root x ∈ Zp of f such that |x− x0|p < |f ′(x0)|p.

We now turn our attention to functions given by power series. Let

f(x) =
∞∑
n=0

an(x− a)n, (1.7)

where a, a0, a1, . . . ∈ Cp. We restrict ourselves to the case where x ∈ Zp; a similar
discussion can be carried out when the variable x belongs to Cp. We de�ne the radius
of convergence R ∈ [0,+∞) ∪ {+∞} by the formula

R =
1

lim supn→∞ |an|
1/n
p

.

The series f(x) converges for x ∈ Zp such that |x − a|p < R, and diverges when
|x − a|p > R. Unlike in classical analysis, f(x) either converges for all x such that
|x − a|p = R, or does not converge for any such x. The disc of convergence D of f
is either D = {x ∈ Zp : |x − a|p ≤ R} or D = {x ∈ Zp : |x − a|p < R}, depending
on which of the above conditions holds. These considerations lead to the following
de�nition.

De�nition 1.9. Let B ⊂ Zp be an open set. We say that f is strictly analytic on
B if it is given by a power series of the form (1.7) and the disc of convergence of f
contains B. We say that f is locally analytic on B if for every b ∈ B there exists
a neighborhood Bb of b such that f is strictly analytic on Bb.

The following summary of properties of p-adic power series is based mainly on [22,
Section 7]. Assume that f(x) =

∑∞
n=0 an(x−a)n has a positive radius of convergence

R. Then f is uniformly continuous on any ball B(a, r) contained within its disc of
convergence D. For power series strictly analytic on Zp we can reformulate this fact
in the following way.

Proposition 1.24. Let f be strictly analytic on Zp. Then for every integer M ≥ 0
there exists an integer T ≥ 0 such that for all x, y ∈ Zp we have

νp(f(pTy + x)− f(x)) ≥M.

We de�ne the derivatives f (k) of f as in the classical case, namely f (0) = f ,

f ′(x) = f (1)(x) =
∞∑
n=1

nan(x− a)n−1,

and inductively
f (k+1) = (f (k))′
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for k ≥ 1. Each derivative has the same disc of convergence as the original series.
The coe�cients of f can be expressed through the derivatives f (k) in the following
way:

an =
f (n)(a)

n!
. (1.8)

For b ∈ D we may write f as a power series centered at b:

f(x) =
∞∑
n=0

bn(x− b)n,

for some coe�cients b0, b1, . . . ∈ Cp, which can be written explicitly using (1.8) with
a replaced by b. This new power series has the same disc of convergence D. As
a consequence, the center of a power series which is strictly analytic on B may be
chosen to be any point of B. We note that the de�nition of the derivative does not
depend on the choice of the center of the disc of convergence.

We now recall an important result of Strassman concerning the number of zeros
of a strictly analytic function on Zp. a proof for power series centered at 0 with
coe�cients in Qp can be found in [37, Theorem 4.4.6] and is easily extended to power
series centered at any a ∈ Zp with coe�cients in Cp.

Theorem 1.25 (Strassman). Let f be a nonzero power series strictly analytic on Zp.
Then f has only �nitely many zeros in Zp.

By [37, Corollary 4.4.7], the roots α1, . . . , αm ∈ Zp of f can be extracted so that

f(x) =

(
m∏
i=1

(x− αi)

)
g(x), (1.9)

where g is strictly analytic on Zp and has no roots in Zp.
Following [45, pp. 78�81], we now take a closer look at two special power series:

the p-adic exponential expp and the p-adic logarithm logp. De�ne

expp(x) =
∞∑
n=0

1

n!
xn.

This series has the disc of convergence {x ∈ Zp : |x|p < p−1/(p−1)}; this is a conse-
quence of the following formula proved by Legendre [47].

Theorem 1.26 (Legendre). Let p be a prime number. Then for all integers n ≥ 0
we have

νp(n!) =
∞∑
k=1

⌊
n

pk

⌋
=
n− sp(n)

p− 1
,

where sp(n) is the sum of the base-p digits of n.
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Also let

logp(x) =
∞∑
n=1

(−1)n+1

n
(x− 1)n.

The disc of convergence of logp is {x ∈ Zp : |x− 1|p < 1}. For any x, y in the discs of
convergence of the respective functions we have the usual identities

expp(x+ y) = expp(x) expp(y),

logp(xy) = logp(x) + logp(y).

Moreover, for x ∈ Zp such that |x|p < p−1/(p−1), we have

expp(logp(1 + x)) = 1 + x,

logp(expp(x)) = x.

Writing Dp = {x ∈ Zp : |x|p < p−1/(p−1)}, we can sum up these properties as follows:
expp and logp are mutually inverse isomorphisms of the additive group Dp and the
multiplicative group 1 +Dp.

One may also consider exponentiation in other bases. For a �xed a ∈ 1 + Dp we
can de�ne ax as the power series in x given by

ax = expp(x logp(a)). (1.10)

This series converges for all x ∈ Zp. When x = n is a nonnegative integer, then the
value of (1.10) coincides with raising a to the power n.

1.2.3 Interpolation of linear recurrence sequences

To conclude this chapter we are going to recall how to express the terms of integer
linear recurrence sequences by means of p-adic power series, which will be a recurring
theme in the thesis. The description below is based on the proofs of the famous
Skolem�Mahler�Lech Theorem found in the paper by Hansel [41] and the book of
Everest, van der Poorten, Shparlinski, and Ward [34, Section 2.1].

First, we recall some standard terminology, as in [34, Section 1.1]. Consider
a sequence (sn)n≥0 of integers satisfying

sn+k =
k−1∑
i=0

aisn+i (1.11)

for all n ≥ 0, where k ≥ 1 and a0, . . . , ak−1 are �xed integers. We say that (1.11) is
a linear recurrence relation and (sn)n≥0 is a linear recurrence sequence. The relation
(1.11) is said to be of order k. In the sequel we only consider relations such that a0
is nonzero.

The polynomial

P (x) = xk −
k−1∑
i=0

aix
i
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is called the characteristic polynomial of the relation (1.11). If this is the linear
recurrence relation of the minimal order satis�ed by a sequence (sn)n≥0, then we say
that P is the minimal polynomial of this sequence. The sequence (sn)n≥0 is said to be
degenerate if its minimal polynomial has a pair of distinct roots whose ratio is a root
of unity. Otherwise, the sequence is called nondegenerate.

We now begin the construction of the interpolating functions. Let (sn)n≥0 be a lin-
ear recurrence sequence satisfying the relation (1.11) with characteristic polynomial
P . Let p be a prime not dividing a0 and let α1, . . . , αr be the (distinct) roots of P
in Cp with respective multiplicities l1, . . . , lr, summing up to k. Then for all integers
n ≥ 0 we have

sn =
r∑
j=1

βj(n)αnj ,

for some β1, . . . βr,∈ Cp[X], where deg βj = lj − 1.
We cannot yet use (1.10) in order to express sn in terms of a p-adic analytic

function, since in general αj 6∈ 1 +Dp. We will however see that this can be done for
subsequences of (sn)n≥0 along certain arithmetic progressions.

Consider the companion matrix of the relation (1.11), namely

C =



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
a0 a1 a2 · · · ak−1


.

Clearly, P is the characteristic polynomial of C and for all n ≥ 0 we have

C


sn
sn+1

...
sn+k−1

 =


sn+1

sn+2

...
sn+k

 .
The matrix C is invertible modulo p, so there exists an integer m > 0 such that
Cm ≡ Ik (mod p), where Ik is the k × k identity matrix. This implies that (sn)n≥0
is periodic modulo p with period m. The characteristic polynomial of the matrix
Cm − Ik is

r∏
j=1

(x− (αmj − 1))lj = xk +
k−1∑
i=0

bix
i, (1.12)

for certain b0, b1, . . . , bk−1 ∈ Z. Observe that νp(bi) ≥ k − i. This implies that the
inequalities νp(αmj − 1) ≥ 1 hold for j = 1, . . . , r, since otherwise we would have

νp((α
m
j − 1)k) < νp

(
k−1∑
i=0

bi(α
m
j − 1)i

)
,
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which contradicts the fact that αmj − 1 is a root of the polynomial in (1.12). Thus,
αmj ∈ 1 +Dp if p 6= 2. In the case p = 2 it may occur that ν2(αmj − 1) = 1 for some j,
and hence αmj 6∈ 1 +D2. Nevertheless, we have C2m ≡ Ik (mod 4), and α2m

j ∈ 1 +D2

follows in a similar fashion.
In either case, we have established the existence of an integer π > 0 such that

απj ∈ 1 + Dp for j = 1, . . . , r. De�ne the p-adic analytic functions fi : Zp → Qp for
i = 0, 1, . . . , π − 1 by

fi(x) =
r∑
j=1

βj(x)απx+ij =
k∑
j=1

βj(x)αij expp(x logp(α
π
j )).

We then have
sπn+i = fi(n)

for all i = 0, 1, . . . π− 1 and n ≥ 0. Therefore, the functions f1, . . . , fπ−1 evaluated at
nonnegative integers collectively interpolate the sequence (sn)n≥0.

21



2. Last nonzero digits of factorials

This chapter, mainly based on the author's paper [70], is devoted to the study of
the properties of last nonzero digits in base-b expansions of consecutive factorials.
We give a necessary and su�cient condition on b for automaticity of the resulting
sequence. Moreover, we explicitly compute how often each �nite string of d digits not
ending with 0 is the �nal such string in the base b-expansion of n!.

2.1 Introduction

Let b ≥ 2 and d ≥ 1 be �xed integers. We introduce the function `b,d : Z →
{0, 1, . . . , bd − 1}, de�ned by

`b,d(m) =

{
b−νb(m)m mod bd if m 6= 0,

0 if m = 0,

where νb denotes the b-adic �valuation� as in (1.5). To simplify the notation, in the
case d = 1 we write `b instead of `b,1. The value of `b,d(m) for m ≥ 0 is precisely the
integer whose base-b expansion is given by the last block of d digits not ending with
zero in the base-b expansion of m. For example, we have

`6,2(2400) = `6,2([15040]6) = [04]6 = 4.

In short, we refer to the value `b,d(m) as d last nonzero base-b digits of m or simply
last nonzero digits of m if the parameters b, d are not speci�ed.

A number of authors have shown interest in studying last nonzero digits of factori-
als. Kakutani [43] considered the sequence (`10(n!))n≥0 in the setting of ergodic theory
and essentially showed it is 5-automatic. Later, Dekking [25] constructed a 9-uniform
morphism such that the sequence (`3(n!))n≥0 is its �xed point, thus proving it to be
3-automatic. The sequence (`10(n!))n≥0, together with (`10(n

n))n≥0 and (`10(Fn))n≥0,
where (Fn)n≥0 is the Fibonacci sequence, was again studied by Dresden [30, 31], who
proved that the real numbers

∞∑
n=1

`10(n!)

10n
,

∞∑
n=1

`10(n
n)

10n
,

∞∑
n=1

`10(Fn)

10n

are transcendental. In his proof for factorials, Dresden implicitly used 5-automaticity
of the sequence (`10(n!))n≥0. Deshouillers and Luca [28] investigated the sequence
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(`4,2(n!))n≥0 (in a disguised form) and proved that a certain coding of this sequence
is 2-automatic. Using its description in terms of uniform morphisms and Legendre's
three-square theorem [47], they were able to conlude that

#{n ≤ x : n! is a sum of three squares} =
7

8
x+O(x2/3).

Deshouillers and Ruzsa [29] pointed out that the reasoning behind automaticity of
(`10(n!))n≥0 can be extended to most bases b. In the smallest case where their ob-
servation does not apply, namely b = 12, they proved that the sequence (`12(n!))n≥0
coincides with a 3-automatic sequence on a set of n of asymptotic density 1. More-
over, they computed that for a ∈ {1, . . . , 11} the frequency of a in (`12(n!))n≥0 is 1/2
if a = 4, 8, and otherwise 0. Further work by Deshouillers [26, 27] and Byszewski and
Konieczny [13] revealed that the characteristic sequences of the sets {n : `12(n!) = a}
for a ∈ {3, 4, 6, 8, 9}, and thus also (`12(n!))n≥0 itself, are not automatic. The ques-
tion of automaticity of (`b(n!))n≥0 for general b was �nally answered by Lipka [51].
In order to state his result, let

b = pl11 · · · plss
be the prime factorization of b, where p1, . . . , ps are distinct primes and l1, . . . , ls are
positive integers. If there are at least two prime factors, we additionally reorder the
primes so that

l1(p1 − 1) ≥ l2(p2 − 1) ≥ · · · ≥ ls(ps − 1) (2.1)

and
p1 = max{pi : li(pi − 1) = l1(p1 − 1)}. (2.2)

We de�ne the set

B = {b ≥ 2 : s = 1 or l1(p1 − 1) > l2(p2 − 1)}.

Lipka proved that the condition b ∈ B, hinted at in [29], is not only su�cient but also
necessary for automaticity of (`b(n!))n≥0. He also provided an explicit construction
of a pl11 -DFAO generating this sequence in the automatic case.

Theorem 2.1 (Lipka). The sequence (`b(n!))n≥0 is p1-automatic if b ∈ B and nonau-
tomatic otherwise.

We stress that being nonautomatic is a property much more di�cult to establish
than not being p1-automatic.

In the present chapter we will extend Theorem 2.1 (and many other discussed
results) to any number d ≥ 1 of last nonzero digits of n! and also prove that even
if (`b,d(n!))n≥0 is not automatic, it coincides with an automatic sequence on a set of
asymptotic density 1.

Theorem 2.2. The sequence (`b,d(n!))n≥0 is p1-automatic if b ∈ B. It is not automatic
if b 6∈ B, however it coincides with a p1-automatic sequence on a set of asymptotic
density 1.
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A characterization of the considered sequence will be given in terms of a p1-uniform
morphism. This in turn allows us to use the method described in Section 1.1.5 to
compute the frequencies of the letters a = 1, . . . , bd − 1 in the sequence (`b,d(n!))n≥0.
It turns out that these frequencies are exactly the same in the subsequences along
arithmetic progressions.

Theorem 2.3. Let a ∈ {1, . . . , bd−1} be such that b-a and let k ≥ 1, l ≥ 0 be integers.
The frequency of a in the sequence (`b,d((kn+ l)!))n≥0 is

1

(p1 − 1)l1
p
νp1 (a)−l1d+1
1

if (b/pl11 )d | a, and otherwise 0.

The results on frequencies in [28] (except for the error term) and [29] are special
cases of Theorem 2.3. The proofs of Theorem 2.2 and Theorem 2.3 are provided in
Section 2.3 and Section 2.5, respectively.

Remark 2.4. One may ask why we study last nonzero digits rather than, simply, last
digits of base-b expansions of integer sequences. The main reason is that many integer
sequences of interest are eventually periodic modulo b, and thus their last digits form
sequences trivially k-automatic for every k ≥ 2. This is true for linear recurrence
sequences, (nn)n≥0 (proven by Hampel [40]), (n!)n≥0, (

(
n
m

)
)n≥0 with m �xed (proven

by Fray [36]), (f(n))n≥0 for f ∈ Z[X], etc.

2.2 Properties of last nonzero digits

Fix the base b ≥ 2 and the number of digits d ≥ 1. In this section we describe some
fundamental properties of last nonzero digits of b-adic numbers (see the end of Section
1.2.1). Although this degree of generality is only needed in the next chapter, we have
decided to discuss the general case here for the sake of a more consistent description.

Let
b = pl11 · · · plss

be the prime factorization of b, where p1, . . . , ps are distinct primes and l1, . . . , ls are
positive integers. For each i = 1, . . . , s denote

bi = plii ,

qi =
b

bi
,

and let ri be an integer such that

qiri ≡ 1 (mod bdi ),

i.e., a multiplicative inverse of qi modulo bdi . Then for any x = (x1, . . . , xs) ∈ Zb we
can write explicitly

x mod bd =
s∑
i=1

qdi r
d
i xi mod bd. (2.3)
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We now de�ne in full generality the functions being the main object of interest in
this and the following chapter. For any x ∈ Qb we let

Lb(x) =

{
b−νb(x)x if x 6= 0,

0 if x = 0,

where νb is de�ned according to the formula (1.6), namely

νb(x) = min
1≤i≤s

νbi(xi) = min
1≤i≤s

⌊
νpi(xi)

li

⌋
.

Furthermore, for any integer d ≥ 1 we de�ne

`b,d(x) = Lb(x) mod bd. (2.4)

It is immediate from the de�nition that Lb takes values in Zb, while `b,d � in the set

{0} ∪ {1 ≤ a ≤ bd − 1 : b - a}.

Moreover Lb(x) = 0 and `b,d(x) = 0 if and only if x = 0. The functions Lb(x) and
`b,d(x) describe last nonzero digits of the b-adic expansion of x ∈ Qb. More precisely,
Lb(x) is the b-adic integer obtained by deleting all the trailing zeros in the b-adic
expansion of x, while `b,d(x) is the integer represented by the last block of d digits
not ending with 0. This is clear if x is a nonnegative integer and in the general case
follows from the discussion in Section 1.2.1.

We now proceed to prove various properties of Lb and `b,d. The �rst lemma helps
to compute their values evaluated at products and sums of integers.

Lemma 2.5. Let x, y ∈ Qb. The functions Lb and `b,d have following properties:

(i) Lb(bx) = Lb(x) and `b,d(bx) = `b,d(x);

(ii) if νb(xy) = νb(x) + νb(y), then

Lb(xy) = Lb(x)Lb(y)

and
`b,d(xy) = `b,d(x)`b,d(y) mod bd;

(iii) if νb(x) > νb(y), then Lb(x+ y) = b−νb(y)(x+ y);

(iv) if νb(x) ≥ νb(y) + d, then `b,d(x+ y) = `b,d(y).

Proof. All the properties follow straight from the de�nitions.

The next lemma shows how `b,d can be written in terms of simpler expressions,
involving prime factors of b.

Lemma 2.6. For every nonzero x = (x1, . . . , xs) ∈ Qb we have
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(i) `b,d(x) =
∑s

i=1 b
νbi (xi)−νb(x)
i qdi r

νb(x)+d
i `bi,d(xi) mod bd;

(ii) Lbi(xi) = Lpi(xi)p
νpi (xi) mod li
i and

`bi,d(xi) = `pi,lid(xi)p
νpi (xi) mod li
i mod bdi .

Proof. For each i = 1, . . . , s the i-th component of Lb(x) can be written in the form

b
νbi (xi)−νb(x)
i q

−νb(x)
i Lbi(xi).

Therefore, `b,d(x) satis�es for each i = 1, . . . , s the congruence

`b,d(x) ≡ b
νbi (x)−νb(x)
i r

νb(x)
i `bi,d(xi) (mod bdi ). (2.5)

As a consequence of (2.3), we get (i).
Moving on to (ii), write νpi(xi) = νbi(xi)li + ui, where 0 ≤ ui ≤ li − 1. We have

Lbi(xi) =
xi

p
νbi (xi)li+ui
i

puii = Lpi(xi)pui .

The result for `bi,d(xi) follows by reducing both sides modulo bdi .

We remark that the exponent νb(xi) + d of ri in (i) contributes only through its
residue modulo

ti = ordbdi (qi).

As a consequence of the congruence (2.5), we may recover some information about
the valuations νbi(xi) knowing only last nonzero digits of x and vice versa.

Corollary 2.7. Let x = (x1, . . . , xs) ∈ Qb be nonzero and �x i ∈ {1, . . . , s}. Then

νbi(`b,d(x)) < d if and only if νbi(xi)− νb(x) < d.

Moreover, in either case we have

νbi(`b,d(x)) = νbi(xi)− νb(x).

Proof. The claim follows directly from the congruence (2.5).

We also exhibit a special case where the summands in Lemma 2.6(i) all vanish
except for one. Obviously, this is always true when b is a prime power.

Corollary 2.8. Assume that b has at least two distinct prime factors and let x =
(x1, . . . , xi) ∈ Qb be nonzero. If j ∈ {1, . . . , s} is such that

νbi(xi) ≥ d+ νbj(xj)

for all i 6= j, then

`b,d(x) = `bj ,d(xj)q
d
j r
νbj (xj)+d

j mod bd.

Proof. The equality is an immediate consequence of Lemma 2.6.
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To conclude this section, we show that the functions Lb and `b,d have good prop-
erties from the point of view of regular and automatic sequences. Throughout this
thesis we are going to prove a number of variations of this result.

Proposition 2.9. The sequence (Lb(n))n≥0 is b-regular and (`b,d(n))n≥0 is b-automatic.

Proof. We have Lb(bn) = Lb(n) and Lb(bn + a) = bn + a for all n ≥ 0 and a =
1, . . . , b− 1. Hence, the b-kernel of the sequence (Lb(n))n≥0 can be written as

Kb((Lb(n))n≥0) = {(Lb(n))n≥0} ∪
b−1⋃
a=1

Kb((bn+ a)n≥0).

The sequences (bn + a)n≥0 are b-regular as polynomials evaluated at consecutive in-
tegers. For each a = 1, . . . , b − 1 we thus have a �nite set Sa ⊂ ZN generating
the Z-module generated by Kb((bn + a)n≥0). Therefore, the Z-module generated by
Kb((Lb(n))n≥0) is generated by the �nite set

{(Lb(n))n≥0} ∪
b−1⋃
a=1

Sa,

which gives b-regularity of (Lb(n))n≥0.
Consequently, by Corollary 1.16 the sequence (`b,d(n))n≥0 is b-automatic as the

reduction modulo bd of a b-regular sequence.

2.3 Automaticity of last nonzero digits of factorials

Our goal in this section is to prove Theorem 2.2. We retain all the notation from
the previous sections. Assume from now on that the prime factors of b are ordered
according to the conditions (2.1) and (2.2).

We �rst give a sketch of the reasoning. As a consequence of Lemma 2.10 below,
if b ∈ B, then pj = p1 is the distinguished prime factor in Corollary 2.8 with x = n!
for all n su�ciently large. Therefore, for all n su�ciently large the value `b,d(n!)
depends only on `b1,d(n!) and νb1(n!) mod t1. These values can in turn be expressed by
`p1,l1d(n!) and νp1(n!) mod l1t1. If we are able to show that the two latter expressions
form p1-automatic sequences, then p1-automaticity of (`b,d(n!))n≥0 will follow. In the
case d = 1 this was already observed (more or less) by Deshouillers and Ruzsa, as
mentioned in Section 2.1. Even if b 6∈ B, the same line of reasoning remains true for
a set of n of natural density 1. Nonautomaticity in the case b 6∈ B will be a simple
consequence of the result of Lipka (Theorem 2.1).

Let Sb,d = N if b is a prime power, and otherwise

Sb,d = {n ≥ 0 : νbi(n!) ≥ d+ νb1(n!) for i = 2, . . . , s} .

The following result shows that this set is large.

Lemma 2.10. The set Sb,d has natural density 1. Furthermore, if b ∈ B, then it
contains all but a �nite number of nonnegative integers.
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Proof. The result is trivial if b is a prime power. If b has at least two distinct prime
factors, we consider two cases.

First, assume that l1(p1 − 1) > l2(p2 − 1). Legendre's formula (Theorem 1.26)
implies

lim
n→∞

νbi(n!)

νb1(n!)
=
l1(p1 − 1)

li(pi − 1)
> 1,

for all i = 2, . . . , s. Hence, all su�ciently large n belong to Sb,d.
Now let l1(p1− 1) = li(pi− 1) for i = 2, . . . , t, where 2 ≤ t ≤ s. By [29, Lemma 3]

for each such i there exists δi > 0 such that the set of nonnegative integers n satisfying

spi(n) ≤ sp1(n)− δi log n

has natural density 1. For each n in this set we get

νbi(n!) =

⌊
n− spi(n)

li(pi − 1)

⌋
≥
⌊
n− sp1(n) + δi log n

l1(p1 − 1)

⌋
≥ νb1(n!) +

⌊
δi log n

l1(p1 − 1)

⌋
.

Therefore, for n su�ciently large we again have n ∈ Sb,d. Since the intersection of
a �nite number of sets of natural density 1 still has natural density 1, our claim
follows.

The key role in the proof of Theorem 2.2 and in the later sections will be played
by the sequence (βb,d(n))n≥0, de�ned by

βb,d(n) =
(
`p1,l1d(n)p

νp1 (n) mod l1
1 qd1r

bνp1 (n)/l1c+d
1

)
mod bd. (2.6)

Indeed, Corollary 2.8 implies that

`b,d(n!) = βb,d(n!)

if and only if n ∈ Sb,d. It remains to verify that the sequence (βb,d(n!))n≥0 is p1-
automatic.

Proof of Theorem 2.2. Put a0 = 1 and an = `p1,l1d(n) for n ≥ 1. Since changing
a �nite number of terms does not a�ect automaticity, the sequence (an)n≥0 is p1-
automatic. For all n ∈ N we have by Lemma 2.5(ii) the equality

`p1,l1d(n!) =

(
n∏

m=0

am

)
mod pl1d1 ,

and thus Theorem 1.18(ii) implies that (`p1,l1d(n!))n≥0 is also p1-automatic.
At the same time, the sequence (νp1(n!))n≥0 is p1-regular by Legendre's formula

and Example 1.5. Hence, both (νp1(n!) mod l1)n≥0 and (bνp1(n!)/l1c mod t1)n≥0 are
p1-automatic sequences due to Corollary 1.16. The terms

βb,d(n!) = `p1,l1d(n!)p
νp1 (n!) mod l1
1 qd1r

bνp1 (n!)/l1c+d
1 mod bd
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are thus expressed as a function of the terms of p1-automatic sequences, and therefore
(βb,d(n!))n≥0 is also a p1-automatic sequence (recall that the exponent of r1 in the
formula (2.6) only contributes through its residue modulo t1).

Now, the sequence (`b,d(n!))n≥0 agrees with (βb,d(n!))n≥0 on the set Sb,d of natural
density 1. According to Lemma 2.10, if b ∈ B, then this set contains all but a �nite
number of positive integers, hence (`b,d(n!))n≥0 is p1-automatic itself.

On the other hand, if for some b 6∈ B the sequence (`b,d(n!))n≥0 were auto-
matic, then so would be its image under the coding a 7→ a mod b, which is precisely
(`b(n!))n≥0. However, this is not the case by Theorem 2.1.

2.4 Generating the sequence

The proof of Theorem 2.2 provides little insight into how a p1-uniform morphism
(or a p1-DFAO) generating the sequence (`b,d(n!))n≥0 might look like. The form of
such a morphism for each pair (b, d) can be recovered by following step-by-step the
rather complicated construction behind the proof of Theorem 1.18. This renders it
di�cult to give a recipe for a suitable morphism, let alone calculate the frequencies
of a = 1, . . . , bd − 1 in (`b,d(n!))n≥0, other than on a case-by-case basis.

In this section we shall derive an explicit form of a p1-uniform morphism generating
(βb,d(n!))n≥0. In the case b ∈ B a simple modi�cation yields a morphism generating
(`b,d(n!))n≥0 as well, since these two sequences di�er only by a �nite number of terms.

Examining the formula (2.6) de�ning βb,d(n), it is clear that (`p,l1d(n!))n≥0 and
(νp1(n!) mod l1t1)n≥0 are two sequences of interest. As we will see shortly, certain
recurrence relations involving the terms of these sequences will also depend on the
residue of n modulo some integer. This motivates us to consider the family of se-
quences

(αp,δ,u,v(n))n≥0 = ((`p,δ(n!), νp(n!) mod u, n mod v))n≥0,

where p is a prime number, and δ, u, v ≥ 1 are integers. For technical reasons we
assume that v is divisible by lcm(pδ−1, u, 2), unless p = 2, δ = 2, in which case we
additionally require that 4 divides v. In order to ease the notation we will consider the
set Θ of such quadruples θ = (p, δ, u, v) of parameters and integchangeably write αθ.
In particular, for the choice of parameters θ = (p1, l1d, l1t1, v) with any appropriate
v the terms βb,d(n!) are the image of αθ(n) under a coding. The main bene�t of this
more general approach is that it enables the computation of the frequencies of letters
in subsequences along any arithmetic progression.

For now, our aim is to �nd for θ = (p, δ, u, v) ∈ Θ a p-uniform morphism generating
(αθ(n))n≥0. We begin by deriving recurrence relations governing the behavior of
`p,δ(n!) and νp(n!). The �rst of these relations involves so-called Gauss factorial (see
for example [24]), de�ned for integers n ≥ 0,m ≥ 2 by

nm! =


1 if n = 0,∏

1≤k≤n
gcd(k,m)=1

k if n > 0.
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We have the following result.

Lemma 2.11. Let p be a prime and δ ≥ 1 an integer. Then for all integers n ≥ 0
and i = 0, . . . , p− 1 we have

(i) `p,δ ((pn+ i)!) = `p,δ(n!)(pn+ i)p! mod pδ;

(ii) νp((pn+ i)!) = νp(n!) + n.

Proof. Since none of the numbers pn+1, . . . , pn+p−1 is divisible by p, it is su�cient
to prove both identities for i = 0.

The �rst equality holds trivially for n = 0 and i = 0. By induction on n we have

`p,δ ((p(n+ 1))!) ≡ `p,δ ((pn)!)

(
p−1∏
j=1

`p,δ(pn+ j)

)
`p,δ(pn+ p)

≡ `p,δ(n!)(pn)p!

(
p−1∏
j=1

(pn+ j)

)
`p,δ(n+ 1)

≡ `p,δ((n+ 1)!)(p(n+ 1))p! (mod pδ),

The equality for νp((pn)!) follows immediately from Legendre's formula (in either
form).

In order to handle the expression (pn + i)p! modulo a power of p we will use the
following standard lemma.

Lemma 2.12. Let p be a prime and δ ≥ 1 an integer. We have

(pδ)p! ≡

{
1 (mod pδ) if p = 2 and δ 6= 2,

−1 (mod pδ) otherwise .

Proof. The claim follows from the fact that the product of all elements in a �nite
abelian group is equal to the product of the elements of order two.

We are now ready to construct a p-uniform morphism such that (αθ(n))n≥0 is its
�xed point. It acts on the alphabet

Λθ = (Z/pδZ)× × (Z/uZ)+ × {0, 1, . . . , v − 1},

where (Z/pδZ)× and (Z/uZ)+ denote the multiplicative group modulo pδ and the
additive group modulo u, respectively. Let ψθ : Λ∗θ → Λ∗θ be de�ned by

ψθ(x, y, z) = (x0, y0, z0)(x1, y1, z1) · · · (xp−1, yp−1, zp−1),

where

xi = x(pz + i)p! mod pδ,

yi = y + z mod u,

zi = pz + i mod v

for i = 0, 1, . . . , p− 1.
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Proposition 2.13. Let θ = (p, δ, u, v) ∈ Θ. The sequence (αθ(n))n≥0 is the �xed
point of ψθ starting with (1, 0, 0).

Proof. We have αθ(0) = (1, 0, 0) for any choice of parameters. We need to show that
for any integer n ≥ 0 a recurrence of the form (1.2) is satis�ed, that is

ψθ(αθ(n)) = αθ(pn)αθ(pn+ 1) · · ·αθ(pn+ p− 1).

Fix n ≥ 0 and let

(x, y, z) = αθ(n) = (`p,δ(n!), νp(n!) mod u, n mod v).

Write n = mv+z, wherem ≥ 0 is some integer. By Lemma 2.12 and the �rst equality
in Lemma 2.11 we obtain for each i = 0, 1, . . . , p− 1 the congruence

`p,δ((pn+ i)!) ≡ `p,δ(n!)(pn+ i)p! ≡ x(pmv + pz + i)p!

≡ x((pδ)p!)
mv/pδ−1

(pz + i)p! ≡ xi (mod pδ).

Here we have used the assumptions on v guaranteeing that v/pδ−1 is an even integer
whenever (pδ)p! ≡ −1 (mod pδ).

The second equality of Lemma 2.11 immediately gives νp((pn+ i)!) ≡ yi (mod u)
for all i = 0, 1, . . . , p− 1, for which it is important that u | v.

Obviously, pz + i ≡ zi (mod v), which completes the proof.

As we have mentioned before, by choosing suitable values of the parameters θ =
(p, δ, u, v) ∈ Θ we can describe the sequence (βb,d(n!))n≥0 as the image of (αθ(n))n≥0
under a coding. Let θ = (p1, l1d, l1t1, v), where v = lcm(pl1d−11 , l1t1, 2) if pl1d1 6= 4, and
otherwise v = 4. We de�ne

ϕb,d = ψθ,

Σb,d = Λθ.

By (2.6) the values βb,d(m) with m nonzero belong to the alphabet

∆b,d = {0 ≤ a ≤ bd − 1 : b - a and qd1 | a}.

We also de�ne the coding τb,d : Σ∗b,d → ∆∗b,d, derived from (2.6), by

τb,d(x, y, z) = xpy mod l1
1 qd1r

by/l1c+d
1 mod bd.

Putting together our considerations so far, we have proven the following theorem.

Theorem 2.14. We have

(βb,d(n!))n≥0 = τb,d(ϕ
ω
b,d((1, 0, 0))).
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This completes the main goal of this section and may serve as an alternative way
of proving that the sequence (βb,d(n!))n≥0 (and (`b,d(n!))n≥0 for b ∈ B) is p1-automatic.

While the method described above covers all pairs (b, d), its generality comes at
the expense of computational e�ectiveness (measured by the cardinality of Σb,d). As
we shall see, in the special case l1 = 1 (and maybe other cases) it is possible to
signi�cantly reduce the size of the alphabets and simplify the overall construction.
As a starting point, we derive a recurrence relation directly involving βb,d(n!). This
corrects [70, Proposition 16], where it is erroneously claimed that a similar relation
holds for any l1.

Lemma 2.15. Assume that l1 = 1. Then for all integers n ≥ 0 and i = 0, . . . , p− 1
we have

βb,d((p1n+ i)!) = βb,d(n!)(p1n+ i)p1 !r
n
1 mod bd.

Proof. By the de�nition of βb,d and the relations of Lemma 2.11 with p = p1, δ = d,
we obtain

βb,d((p1n+ i)!) ≡ `p1,d((p1n+ i)!)qd1r
νp1 ((p1n+i)!)+d
1

≡ `p1,d(n!)(p1n+ i)p1 !q
d
1r
νp1 (n!)+n+d
1

≡ βb,d(n!)(p1n+ i)p1 !r
n
1 (mod bd).

Based on this relation, it is not hard to see how the construction should progress.
Consider the alphabet

Σ̂b,d = ∆b,d × {0, . . . , v − 1},

where v = lcm(pd−11 , t1, 2), unless p1 = 2, d = 2, in which case v = 4.
There is a bijection between ∆b,d and (Z/pd1Z)× (given by a 7→ a/qd1 mod pd1).

Hence, Σ̂b,d is essentially the same as Σb,d, but with the factor (Z/l1t1Z)+ omitted in
the Cartesian product de�ning the alphabet. The assumption l1 = 1 gives #Σ̂b,d =
#Σb,d/t1, which is a major improvement from the computational point of view.

We de�ne a p1-uniform morphism ϕ̂b,d : Σ̂∗b,d → Σ̂∗b,d. by

ϕ̂b,d(x, z) = (x0, z0)(x1, z1) · · · (xp1−1, zp1−1),

where for i = 0, 1, . . . , p1 − 1, we put

xi = x(p1z + i)p1 !r
z
1 mod bd,

zi = p1z + i mod v.

Finally, we de�ne the coding τ̂b,d : Σ̂∗b,d → ∆∗b,d by

τ̂b,d(x, z) = x.

The following proposition relies on an almost identical argument as Proposition 2.13,
thus we omit the proof.
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Proposition 2.16. Assume that l1 = 1. Then

(βb,d(n!))n≥0 = τ̂b,d(ϕ̂
ω
b,d(q

d
1r
d
1 mod bd, 0)).

In the case d ∈ {1, 2} the expression (p1z + i)p1 ! in the de�nition of ϕ̂b,d can be
simpli�ed. If d = 1, then

(p1z + i)p1 ! ≡ (−1)zi! (mod p1).

If d = 2, we can use the following lemma.

Lemma 2.17. Let p ≥ 3 be a prime. Then for all integers m ≥ 0 we have

(p− 1)! ≡
p−1∏
j=1

(pm+ j) (mod p2).

Therefore,
(pm)p! ≡ ((p− 1)!)m (mod p2).

Proof. Consider the polynomial

f(z) =

p−1∏
j=1

(z + j).

In particular, f(0) = (p − 1)!. Since 1, 2, . . . , p − 1 are the roots of f modulo p, we
can write

f(z) = zp−1 − 1 + pg(z)

where g is a polynomial with integer coe�cients. Then

p−1∏
j=1

(pm+ j) = f(pm) ≡ −1 + pg(pm) ≡ −1 + pg(0) (mod p2),

which does not depend on m.

This leads to further simpli�cations if q1 = b/p1 is congruent to (p1 − 1)! modulo
pd1. Below we summarize these cases.

Lemma 2.18. Assume that l1 = 1. Let d ∈ {1, 2}, (x, z) ∈ Σ̂b,d, and let

xi = x(p1z + i)p1 !r
z
1 mod bd,

for i = 0, 1, . . . , p1 − 1, as in the de�nition of ϕ̂b,d. Then

xi =


x(−r1)zi! if d = 1,

x((p1 − 1)!r1)
z
∏i

j=1(p1z + j) if d = 2 and p1 ≥ 3,

x(−1)b(2z+i+1)/4c if d = 2 and p1 = 2

mod bd.

If additionally q1 ≡ (p1 − 1)! (mod pd1), then

xi =

{
xi! if d = 1,

x
∏i

j=1(p1z + j) if d = 2 and p1 ≥ 3
mod bd.
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Proof. Since x is always divisible by qd1 , the case d = 1 follows from (p1 − 1)! ≡ −1
(mod p1). In the case d = 2 and p1 ≥ 3 the desired formulas follow from Lemma 2.17.
If p1 = 2, then by l1 = 1 and the condition (2.1) we must have b = 2. One can check
by hand that (m)2! ≡ (−1)b(m+1)/4c (mod 4) for m = 0, 1, . . . , 7. Finally, q1r1 ≡ 1
(mod pd1) gives the claim in the case q1 ≡ (p1 − 1)! (mod pd1)

As a consequence, if l1 = 1, d = 1, and q1 ≡ (p1 − 1)! ≡ −1 (mod p1), then xi in
the de�nition of ϕ̂b,1 does not depend on z at all. In this case we may further reduce
the alphabet to ∆b,1. It is the best we can achieve, since by the results in the next
section βb,1(n!) takes on all values in ∆b,1. De�ne a p1-uniform morphism ϕ̃b,1 acting
on ∆b,1 by

ϕ̃b,1(x) = x0x1 . . . xp1−1

for x ∈ ∆b,1, where
xi = x · i! mod b.

By the above discussion we immediately obtain the following characterization.

Corollary 2.19. Assume that l1 = 1 and q1 ≡ −1 (mod p1). Then

(βb,1(n!))n≥0 = ϕ̃ωb,1(q1r1 mod b).

Analogously, if l1 = 1, d = 2, and q1 ≡ (p1− 1)! (mod p21), then z only contributes
to xi through its residue modulo p1 rather than modulo v = lcm(p1, t1, 2). Example 2.1
below illustrates this situation and also shows how to construct a morphism generating
the original sequence (`b,d(n!))n≥0.

Example 2.1. Consider two last nonzero digits of n! in base b = 6. The condition
(2.1) implies p1 = 3, l1 = 1 and p2 = 2, l2 = 1. We have 6 ∈ B, so the sequence
(`6,2(n!))n≥0 is 3-automatic.

We de�ne a 3-uniform morphism ϕ̃6,2 and coding τ̃6,2 which generate the cor-
responding 3-automatic sequence (β6,2(n!))n≥0. We have q1 = b/p1 = 2 and put
r1 = 5, so that q1r1 ≡ 1 (mod 32). By de�nition β6,2(1) = q21r

2
1 mod 62 = 28. Since

(p1 − 1)! = 2 = q1, by Lemma 2.18 obtain

β6,2((3n+ i)!) = β6,2(n!)
i∏

j=1

(3z + j) mod 62

for all n ≥ 0 and i = 0, 1, 2, where z = n mod 3.
The 3-uniform morphism ϕ̃6,2 is de�ned on the alphabet

Σ̃6,2 = {4, 8, 16, 20, 28, 32} × {0, 1, 2}

by the formula
ϕ̃6,2(x, z) = (x0, 0)(x1, 1)(x2, 2),

where

x0 = x, x1 = x(3z + 1) mod 62, x2 = x(3z + 1)(3z + 2) mod 62.
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x
z 4 8 16 20 28 32
0 4, 4, 8 8, 8, 16 16, 16, 32 20, 20, 4 28, 28, 20 32, 32, 28
1 4, 16, 8 8, 32, 16 16, 28, 32 20, 8, 4 28, 4, 20 32, 20, 28
2 4, 28, 8 8, 20, 16 16, 4, 32 20, 32, 4 28, 16, 20 32, 8, 28

Table 2.1: The values x1, x2, x3 in ϕ̃6,2(x, z)

In Table 2.1 below we give explicit values x1, x2, x3 for each argument (x, z).
The sequence (β6,2(n!), n mod 3)n≥0 is the �xed point of ϕ̃6,2 starting with (28, 0)

and (β6,2(n!))n≥0 is its image under the coding τ̃6,2(x, y) = x.
In order to generate the sequence (`b,d(n!))n≥0 we need to modify the above con-

struction to handle the terms such that `b,d(n!) 6= βb,d(n!). It is easily veri�ed that
ν2(n!) ≥ 2 + ν3(n!) for all n ≥ 4, thus these are precisely the four initial terms. We
add four new symbols to Σ̃6,2, say A,B,C,D, and de�ne

ϕ̃6,2(A) = ABC, ϕ̃6,2(B) = D(4, 1)(20, 2),

ϕ̃6,2(C) = (20, 0)(32, 1)(4, 2), ϕ̃6,2(D) = (28, 0)(28, 1)(20, 2),

so that the �rst coordinate of ϕ̃ω6,2(A) forms the sequence

A,B,C,D, β6,2(4!), β6,2(5!), . . . .

Finally, we put

τ̃6,2(A) = 1, τ̃6,2(B) = 1, τ̃6,2(C) = 2, τ̃6,2(D) = 1,

which yields
(`6,2(n!))n≥0 = τ̃6,2(ϕ̃

ω
6,2(A)),

as desired.

2.5 Frequencies of letters

This section is devoted to the computation of the frequencies of letters in the sequence
(`b,d(n!))n≥0 and its subsequences along arithmetic progressions by employing the
method outlined in Section 1.1.5.

Let us start with an example.

Example 2.2. Consider once again the sequence (`6,2(n!))n≥0. The frequencies of
letters in this sequence are the same as in (β6,2(n!))n≥0. Using Table 2.1, we can
retrieve the form of the 18 × 18 incidence matrix M(ϕ̃6,2). Calculations show that
M(ϕ̃6,2)

4 has all entries positive, and thusM(ϕ̃6,2) is primitive. Moreover, 1
3
M(ϕ̃6,2) is

a row-stochastic matrix. This could be also deduced without computing the incidence
matrix directly, from the observation that for each �xed z the functions of x de�ning
x0, x1, x2 are bijective. As a consequence, each (x, z) ∈ Σ̃6,2 appears in ϕ̃ω6,2(28, 0)
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with frequency 1/18. Since for all n ≥ 0 the �rst coordinate of the nth symbol in
this in�nite word is β6,2(n!), we obtain that each a ∈ {4, 8, 16, 20, 28, 32} appears in
(`6,2(n!))n≥0 with frequency 1/6.

In the general case we are going to proceed in the same way. The proof that for
any θ = (p, δ, u, v) ∈ Θ the morphism ψθ (and thus also ϕb,d as a special case) is
primitive will however require considerably more e�ort than in Example 2.2, since
a direct computation of the powers of the incidence matrix M(ψθ) depending on θ
seems rather futile. Utilizing certain symmetries exhibited by ψθ, we will also show
that 1

p
M(ψθ) is a row-stochastic matrix. Then it will follow that (αθ(n))n≥0 takes all

values in Λθ with frequency 1/#Λθ. Finding the frequencies of letters in (`b,d(n!))n≥0
will then rely on a simple calculation. First, we give a useful observation concerning
ψθ.

Recall that we have de�ned the �rst and second components of (x, y, z) ∈ Λθ

as elements of the multiplicative group (Z/pδZ)× and the additive group (Z/uZ)+,
respectively. When performing operations on these components we will thus omit the
moduli.

Lemma 2.20. Let θ = (p, δ, u, v) ∈ Θ and let m, i, z be integers such that m ≥ 1,
0 ≤ i ≤ pm − 1, and 0 ≤ z ≤ v − 1. Then there exists (e, f, g) ∈ Λθ, depending only
on m, i, z, such that for all (x, y) ∈ (Z/pδZ)×× (Z/uZ)+ the ith symbol in ψmθ (x, y, z)
(counting from 0) is equal to (xe, y + f, g).

Proof. We use induction on m. For m = 1 we deduce straight from the de�nition of
ψθ that

(e, f, g) = ((pz + i)p! mod pδ, z mod u, (pz + i) mod v).

Now assume that the result is satis�ed up to m. Write

i = pi1 + i0,

where i1, i0 are integers such that 0 ≤ i1 ≤ pm − 1 and 0 ≤ i0 ≤ p − 1. Also let
(e1, f1, g1) ∈ Λθ be the triple corresponding to m, i1, z. Observe that the ith symbol
in ψm+1

θ (x, y, z) is obtained by taking i0th symbol in the word

ψθ(xe1, y + f1, g1),

where the argument of ψθ is precisely the i1th symbol of ψmθ (x, y, z). Hence, the triple
(e, f, g) corresponding to m, i, z is equal to

(e, f, g) = (e1(pg1 + i1)p! mod pδ, (f1 + g1) mod u, (pg1 + i1) mod v),

and the result follows.

Our main tool in studying the properties of ψθ is the relation Rθ on Λθ such that

(x, y, z)Rθ(x
′, y′, z′)

if and only if (x′, y′, z′) appears in ψmθ (x, y, z) (at any position) for some integerm ≥ 1.
From Lemma 2.20, we immediately obtain a corollary concerning Rθ.
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Corollary 2.21. Let θ = (p, δ, u, v) ∈ Θ. Assume that (x, y, z)Rθ(x
′, y′, z′) for some

(x, y, z), (x′, y′, z′) ∈ Λθ. Then for any (X, Y ) ∈ (Z/pδZ)× × (Z/uZ)+ we have

(xX, y + Y, z)Rθ(x
′X, y′ + Y, z′).

Proof. Let m, i be such that (x′, y′, z′) appears at position i in ψmθ (x, y, z). Hence,
the triple (e, f, g) ∈ Λθ in Lemma 2.20 applied to m, i, z, is given by (x′, y′, z′) =
(ex, y + f, g). Replacing (x, y) with (xX, y + Y ) in Lemma 2.20 and substituting
(x′, y′, z′), we obtain the assertion.

We would like to prove that all the elements of Λθ are related through Rθ, which
is a condition close to primitivity of ψθ. This will be done by �rst verifying that Rθ is
an equivalence relation and then showing that there exists only one equivalence class.

Lemma 2.22. For any θ ∈ Θ the relation Rθ is an equivalence relation on Λθ.

Proof. Transitivity of Rθ follows from the de�nition.
Moving on to symmetry, assume that (x, y, z)Rθ(x

′, y′, z′). From the formulas
de�ning ψθ or Proposition 2.13 we see that for any m ≥ 1 the projection of ψmθ (x, y, z)
onto the third coordinate is a sequence of pm consecutive integers modulo v. Hence,
there exist x′′ ∈ (Z/pδZ)×, y′′ ∈ (Z/uZ)+ such that (x′, y′, z′)Rθ(xx

′′, y + y′′, z), and
thus also (x, y, z)Rθ(xx

′′, y + y′′, z) by transitivity. Corollary 2.21 and transitivity of
Rθ imply that for all integers n ≥ 1 we have (x, y, z)Rθ(x(x′′)n, y + ny′′, z). Again,
by transitivity we get (x′, y′, z′)Rθ(x(x′′)n, y + ny′′, z). Choosing n to be the order of
(x′′, y′′) in (Z/pδZ)× × (Z/uZ)+, we obtain (x′, y′, z′)Rθ(x, y, z).

Obviously, each element (x, y, z) ∈ Λθ is related with at least one element. By
transitivity and symmetry we thus obtain (x, y, z)Rθ(x, y, z).

To prove that Rθ has only one equivalence class it is now su�cient to check that
(1, 0, 0)Rθ(x, y, z) for every (x, y, z) ∈ Λθ, or equivalently, that the terms αθ(n) take
all values in Λθ. This is not obvious and the proof will rely on an identity involving
the terms `p,δ(n!).

Lemma 2.23. Let p be a prime and δ ≥ 1 an integer. For any integers n,m ≥ 0 not
divisible by p, and integers s ≥ 0, t ≥ δ + blogm/ log pc we have

(−1)pm−1`p,δ((p
s+tn)!)m ≡ `p,δ((p

s+tn− psm)!) `p,δ((p
sm)!) n (mod pδ).

Proof. Expanding `p,δ((ps+tn)!), we obtain

`p,δ((p
s+tn)!) ≡`p,δ((ps+tn− psm)!)(

psm−1∏
j=1

`p,δ(p
s+tn− j)

)
n (mod pδ). (2.7)

Since t ≥ δ + blogm/ log pc, we have νp(j) ≤ s + t − δ for each j = 1, . . . , psm − 1.
By Lemma 2.5(iii) we obtain

`p,δ(np
s+t − j) ≡ −`p,δ(j) (mod pδ).

Our claim follows by multiplying both sides of (2.7) by `p,δ(psm) ≡ m (mod pδ).
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The next lemma is the key part of our reasoning towards proving that ψθ is
primitive.

Lemma 2.24. Let θ = (p, δ, u, v) ∈ Θ. Then for every (x, y) ∈ (Z/pδZ)× × (Z/uZ)+

we have
(1, 0, 0)Rθ(x, y, 0).

Proof. We want to show that the set

H = {(x, y) ∈ (Z/pδZ)× × (Z/uZ)+ : (1, 0, 0)Rθ(x, y, 0)}

is the whole group (Z/pδZ)× × (Z/uZ)+. This will be done by �rst verifying that H
is a subgroup and then exhibiting a set of generators of (Z/pδZ)× × (Z/uZ)+ in H.

Let (x, y), (x′, y′) ∈ H, so that (1, 0, 0)Rθ(x, y, 0) and (1, 0, 0)Rθ(x
′, y′, 0). By

Corollary 2.21 we obtain ((x′)−1,−y′, 0)Rθ(1, 0, 0), and thus symmetry of Rθ gives
(1, 0, 0)Rθ((x

′)−1,−y′, 0). Combined with another application of Corollary 2.21, this
yields

(1, 0, 0)Rθ(x, y, 0)Rθ(x(x′)−1, y − y′, 0),

and hence (xx′−1, y − y′) ∈ H.
We now move on to �nd elements in H generating (Z/pδZ)× × (Z/uZ)+. Let H1

be the projection of H onto the �rst coordinate, a subgroup of (Z/pδZ)×. Lemma
2.23 with s = νp(v),m = v/ps, t ≥ δ + blogm/ log pc, and n = mx, where x is any
positive integer not divisible by p, gives

− `p,δ((ptxv)!) ≡ `p,δ((p
txv − v)!)`p,δ(v!)x (mod pδ), (2.8)

where we have used the fact that pm is even (this is guaranteed by the assumptions
on v). We have `p,δ((ptxv)!), `p,δ((p

txv − v)!), `p,δ(v!) ∈ H1. Considering −x as an
element of the ring Z/pδZ, we also get −x ∈ H1. Since x was arbitrary, we obtain
H1 = (Z/pδZ)×.

Now put x = 1 in the congruence (2.8), so that

− `p,δ((ptv)!) ≡ `p,δ((p
tv − v)!)`p,δ(v!) (mod pδ). (2.9)

Applying t times the �rst relation of Lemma 2.11, we get

`p,δ((p
tv)!) ≡ `p,δ(v!)

t∏
j=1

(pjv)p! ≡ `p,δ(v!) (mod pδ),

where the second congruence follows from Lemma 2.12 and the assumptions on v.
Hence, (2.9) becomes

`p,δ((p
tv − v)!) ≡ −1 (mod pδ) (2.10)

and this holds for any t ≥ δ + blogm/ log pc.
We now compute νp((ptv − v)!) mod u by Legendre's formula. Since pt > m, we

obtain

sp(p
tv − v) = sp(p

tm−m) = sp(p
t(m− 1) + pt −m)

= sp(p
t(m− 1)) + sp(p

t −m) = sp(m− 1) + sp(p
t −m).
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We can further calculate

sp(p
t −m) = sp(p

t − 1− (m− 1)) = t(p− 1)− sp(m− 1),

which gives sp(ptv − v) = t(p− 1). Hence,

νp((p
tv − v)!) =

pt − 1

p− 1
v − t ≡ −t (mod u).

Taking t ≡ 0 (mod u) and t ≡ −1 (mod u), the above congruence together with
(2.10) give (−1, 0) ∈ H and (−1, 1) ∈ H, respectively, so also (1, 1) ∈ H. Taking into
account that for every x ∈ (Z/pδZ)× there exists y ∈ (Z/uZ)+ such that (x, y) ∈ H,
as we have proved earlier, we obtain the claim.

A simple argument now shows that ψθ is a primitive morphism.

Proposition 2.25. For any θ ∈ Θ the morphism ψθ is primitive.

Proof. Let (x, y, z) ∈ Λθ. From the de�nition of ψθ we see that there exists a pair
(x′, y′) ∈ (Z/pδZ)× × (Z/uZ)+ such that (x′, y′, 0)Rθ(x, y, z). By Lemma 2.24 and
transitivity of Rθ we get (1, 0, 0)Rθ(x, y, z). Therefore, by Lemma 2.22 Rθ has only
one equivalence class. In other words, the incidence matrix M(ψθ) is irreducible.
Recall that a nonnegative square matrix M of dimension k is called irreducible if for
any i, j ∈ {1, . . . , k} there exists a positive integer n such that the entry of Mn at
position (i, j) is positive. Because our matrix M(ψθ) has a positive diagonal entry
corresponding to (1, 0, 0), it is primitive by [42, Theorem 8.5.9]

We are �nally ready to compute the frequencies of letters in the sequence (αθ(n))n≥0.

Theorem 2.26. Let θ = (p, δ, u, v) ∈ Θ. Each letter from Λθ appears in the sequence
(αθ(n))n≥0 with frequency

1

pδ−1(p− 1)uv
.

Equivalently, for any integers k ≥ 1, l ≥ 0, each letter from (Z/pδZ)× × (Z/uZ)+

appears in the sequence (`p,δ((kn+ l)!), νp((kn+ l)!) mod u)n≥0 with frequency

1

pδ−1(p− 1)u
.

Proof. To begin, we argue that the two statements are equivalent. The �rst part
of our claim holds if and only if for any z ∈ {0, 1, . . . , v − 1} each symbol (x, y) ∈
(Z/pδZ)× × (Z/uZ)+ occurs in the sequence (`p,δ((vn+ z)!), νp((vn+ z)!) mod u)n≥0
with frequency

1

pδ−1(p− 1)u
.

Hence, the second part applied to k = v, l = z implies the �rst part. The converse
is also true, since we can choose the parameter v to be divisible by k and express
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the arithmetic progression (kn + l)n≥0 as the union (up to �nitely many terms) of
arithmetic progressions of the form (vn+ z)n≥0 with z ≡ l (mod k).

We now proceed to prove the �rst part of the statement. By Proposition 2.25
it is su�cient to show that the incidence matrix of ψθ is a scalar multiple of a row-
stochastic matrix. Since ψθ is a p-uniform morphism, this is equivalent to saying that
there are exactly p occurrences of each triple (x, y, z) ∈ Λθ in the words ψθ(x′, y′, z′)
with (x′, y′, z′) ∈ Λθ.

Let N(x, y, z) denote the number of such occurrences. By Lemma 2.20 the value of
N(x, y, z) only depends on z. For any x′, y′ �xed as (i, z′) varies over {0, 1, . . . , p−1}×
{0, 1, . . . , v − 1} the values pz′ + i mod v, in the third coordinate of ψθ(x′, y′, z′), are
equally distributed among residue classes modulo v. Hence, each z ∈ {0, 1, . . . , v−1}
occurs in the third coordinate the same amount of times, or in other words, the sum∑

(x,y)N(x, y, z) with (x, y) running over (Z/pδZ)×× (Z/uZ)+ has the same value for
each z. Since the summands are all equal too, we must have N(x, y, z) = p for all
(x, y, z) ∈ Λθ, as desired.

Roughly speaking, Theorem 2.26 asserts that for any (p, δ, u, v) ∈ Θ the com-
ponents of αθ behave like independent uniformly distributed random variables. To
conclude the present chapter, we apply the result just proved to verify that the fre-
quencies of letters in the sequence (`b,d(n!))n≥0 are as stated in Theorem 2.3.

Proof of Theorem 2.3. Since (`b,d(n!))n≥0 and (βb,d(n!))n≥0 coincide on a set of density
1, it is su�cient to compute the frequencies of letters in the latter sequence. Let
a ∈ {1, . . . , bd − 1} be such that b - a. If qd1 - a, or equivalently a 6∈ ∆b,d, then the
frequency of a is zero.

If qd1 - a, we use the description of (`b,d(n!))n≥0 as the image of (αθ(n))n≥0 under the
coding τb,d, where θ = (p1, l1d, l1t1, v) with an appropriate v. For any (x, y, z) ∈ Λθ

we have τb,d(x, y, z) = a if and only if the congruences

xp
νp1 (a)
1 r

by/l1c
1 ≡ a (mod pl1d1 ),

y ≡ νp1(a) (mod l1)

are satis�ed. Among pl1d−11 (p1 − 1)l1t1 possible pairs (x, y) ∈ (Z/pδZ)× × (Z/uZ)+

there are exactly p
νp1 (a)
1 t1 solutions to this system of congruences. Thus, by Theorem

2.26 the symbol a appears in (βb,d((kn+ l)!))n≥0 with frequency

1

l1(p1 − 1)
p
νp1 (a)−l1d+1
1 .

As an immediate corollary, in the case l1 = 1 all the frequencies are equal.

Corollary 2.27. Assume that l1 = 1. Let a ∈ {1, . . . , bd − 1} be such that b - a and
let k ≥ 1, l ≥ 0 be integers. The frequency of a in the sequence (`b,d((kn+ l)!))n≥0 is

1

pd−11 (p1 − 1)
.
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3. Last nonzero digits of

polynomials and p-adic analytic

functions

In this chapter we investigate last nonzero digits of polynomials and p-adic analytic
functions evaluated at integers. We shall give necessary and su�cient conditions for
these sequences to be automatic or regular. Unsurprisingly, these results also turn
out to be closely related to regularity of p-adic valuations of polynomials and p-adic
analytic functions.

3.1 Introduction

The properties of last nonzero digits of sequences other than (n!)n≥0 have also been
studied by several authors (though usually not referred to in this way). In Section
2.1 we have already mentioned the results of Dresden [30, 31] on the last nonzero
digit of Fn and nn in base 10. Periodicity of the sequence (`b(n

n))n≥0 for any base b
was studied by Grau and Oller-Marcén [38]. It can be extracted from their reasoning
that for b prime this sequence is b-automatic. Robbins [63] and later Latushkin
and Ushakov [46] determined precisely which Fibonacci and Lucas numbers can be
expressed as a sum of three squares, which is closely connected to the study of the
sequences (`4,2(Fn))n≥0 and (`4,2(Ln))n≥0 via Legendre's three-square theorem. In the
case of the numbers Hd(n) counting permutations on n symbols being products of
disjoint d-cycles, for certain primes p the sequence (`p,w(Hp(n)))n≥0 was proved to be
periodic for all w by Miska and Ulas [59, Corollary 4.8]. From the results of Ulas
and �mija [71, Theorems 3.5 and 4.1] one can deduce that for any �xed prime p ≥ 3
and integer m ≥ 1 the sequence (`p(dm(n)))n≥0 is p-automatic, where dm(n) counts
certain mp-colored p-ary partitions of n.

In this chapter we study regularity and automaticity of last nonzero digits of
polynomials and p-adic analytic functions evaluated at integers. The main inspiration
behind considering this particular family of functions comes from the following result
by Shu and Yao [68] (earlier proved by Bell [8] for polynomials).

Theorem 3.1 (Shu, Yao). Let f : Zp → Cp be a p-adic locally analytic function on
Zp which does not have any root in N. Then the sequence (νp(f(n)))n≥0 is p-regular
if and only if all the roots of f in Zp are contained in Q.
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Their results rely in particular on examining the p-adic expansions of the roots
of the considered functions. We observed that a similar approach also works in the
case of last nonzero digits. Our study reveals a direct connection between p-regularity
of the sequences of p-adic valuations and last nonzero digits of f(n) in base p. We
also extend the scope of our investigation to last nonzero digits in an arbitrary base
b ≥ 2. As we will see in the later sections, the results for prime power bases are quite
di�erent from those for bases having two or more distinct prime factors.

We now state the main goals for this chapter. Let b ≥ 2 be an integer base and
d ≥ 1 the number of considered digits. Let p1, . . . , ps denote the prime factors of b.
We study s-tuples f = (f1, . . . , fs), where fi : Zpi → Qpi is locally analytic on Zpi for
i = 1, . . . , s. We consider each such f as a function de�ned on the set

Q ∩ Zb = {x ∈ Q : νpi(x) ≥ 0 for i = 1, . . . , s},

and write f(x) = (f1(x), . . . , fs(x)).
This is a quite general setting, which entails many naturally occuring examples. In

particular, if fi are all equal to the same polynomial with rational coe�cients, then we
can identify f with this polynomial. Moreover, one can study s-tuples of (f1, . . . , fs)
such that all fi interpolate the same linear recurrence sequence pi-adically.

We would like to answer the following questions.

Questions:

1. When is (`b,d(f(n)))n≥0 a k-automatic sequence?

2. When is (Lb(f(n)))n≥0 a k-regular sequence?

Observe that Proposition 2.9 already answers both of these questions in the case
when k = b and f(x) = x.

In view of Cobham's Theorem and its generalization by Bell (Theorems 1.6 and
1.7) there are a priori three possible answers to both questions, namely that the
considered sequence is:

(a) k-automatic (resp. k-regular) for all k ≥ 2;

(b) k-automatic (resp. k-regular) for some k ≥ 2 and not l-automatic (resp. l-
regular) for l multiplicatively independent with k;

(c) not automatic (resp. not regular).

We shall see that for both questions every case (a) � (c) occurs for a vast class of
functions.

3.2 Some basic reductions

Before attempting to answer Questions 1 and 2, in this section we argue that without
loss of generality we can narrow down the class of considered functions. We let

b = pl11 · · · plss
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be the prime factorization of b, where p1, . . . , ps are distinct primes and l1, . . . , ls are
positive integers. For i = 1, . . . , s put bi = plii .

First, we explain why it is su�cient to consider f1, . . . , fs strictly analytic rather
than locally analytic (following an argument by Shu and Yao [68]). This is convenient,
as it allows us to use Strassman's Theorem together with the formula (1.9).

Proposition 3.2. Let fi be locally analytic on Zpi for i = 1, . . . , s. Then there exists
an integer R ≥ 0 such that for each i = 1, . . . , s and a = 0, 1, . . . , bR − 1 the function
fi(b

Rx+ a) of x ∈ Zpi is strictly analytic on Zpi.

Proof. Starting with the case s = 1, let f be locally analytic on Zp. Then for every
x ∈ Zp we can �nd an integer r(x) ≥ 0 such that f is strictly analytic on the clopen
ball B(x, p−r(x)). By compactness of Zp there exist x1, . . . , xm such that the balls
B(xm, p

−r(xm)) cover Zp. Let r be an integer such that r ≥ max1≤j≤m r(xj). Then for
any a ∈ Z there exists j such that we have prx + a ∈ B(xj, p

−r(xj)) for all x ∈ Zp.
Hence, the functions f(prx+ a) are all strictly analytic on Zp as functions of x.

In the case where b has s ≥ 2 distinct prime factors p1, . . . , ps we repeat the above
reasoning for each pi, obtaining a corresponding integer ri. The assertion follows by
taking R such that R ≥ ri/li for all i = 1, . . . , s.

Theorem 1.9 says that k-regularity of the sequence (Lb(f(n)))n≥0 is equivalent to
k-regularity of (Lb(f(bRn+ a)))n≥0 for all a = 0, 1, . . . , bR− 1. The same observation
also applies to k-automaticity of (`b,d(f(n)))n≥0. Hence, rather than directly consider
s-tuples of locally analytic functions, by virtue of Proposition 3.2 we can answer our
questions �locally� for each s-tuple f(bRn+ a) of strictly analytic functions.

Moreover, we can further reduce the problem to the nondegenerate case where
none of the functions f1, . . . , fs is identically zero. Clearly, if f1 = · · · = fs = 0,
then Lb(f(n)) = `b,d(f(n)) = 0, so the resulting sequences are constant, and thus
k-automatic for every k ≥ 2. If not all fi are equal to 0, we may use the following
proposition.

Proposition 3.3. Let f = (f1, . . . , fs), where fi is a strictly analytic function on Zpi
for i = 1, . . . , s. Assume that fs = 0. Let b = b/bs and f = (f1, . . . , fs−1). Then for
any integer k ≥ 2 we have the following:

(i) the sequence (Lb(f(n)))n≥0 is k-regular if and only if (Lb(f(n)))n≥0 is k-regular;

(ii) the sequence (`b,d(f(n)))n≥0 is k-automatic if and only if (`b,d(f(n)))n≥0 is k-
automatic.

Proof. Because νbs(fs(n)) = +∞, we have νb(f(n)) = νb(f(n)) for all integers n ≥ 0.
Hence, we can write

Lb(f(n)) =
(
Lb(f(n)), 0

)
.

The �rst assertion follows from Proposition 1.14 which says that a sequence of pairs
(un, vn)n≥0 is k-regular if and only if both sequences (un)n≥0 and (vn)n≥0 are k-regular.
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Part (ii) uses the fact that the isomorphism between the rings Z/bdZ and Z/b1Z×
· · · ×Z/bsZ maps `b,d(f(n)) to the s-tuple of values whose ith component is equal to

b
νbi (fi(n))−νb(f(n))
i r

νb(f(n))
i `bi,d(fi(n)) mod bdi (3.1)

for i = 1, . . . , s, where ri denotes a multiplicative inverse of b/bi modulo bdi . This is
a direct consequence of the congruence relations (2.5). Theorem 1.11 implies that
(`b,d(f(n)))n≥0 is k-automatic if and only if for each i = 1, . . . , s the sequence consist-
ing of the terms (3.1) is k-automatic. But for i = s this is the zero sequence, which
is l-automatic for any l ≥ 2. The result follows.

Propositions 3.2 and 3.3 encourage us to consider the family of functions

Ab = {f = (f1, . . . , fs) : fi : Zpi → Qpi is strictly analytic on Zpi ,
fi 6= 0 for i = 1, . . . , s}.

We point out that Ab only depends on the set of prime factors of b.
The following result shows that a further reduction can be made when studying

regularity of (Lb(f(n)))n≥0.

Proposition 3.4. Let f = (f1, . . . , fs) ∈ Ab be such that the sequence (Lb(f(n)))n≥0
is k-regular for some k ≥ 2. Then for each i = 1, . . . , s the function fi is a polynomial.

Proof. We �rst prove that if g ∈ Ap for some prime p and (g(n))n≥0 is k-regular for
some k ≥ 2, then g must be a polynomial. Write

g(x) =
∞∑
m=0

amx
m,

where am ∈ Qp for m = 0, 1, . . .. Since (g(n))n≥0 is k-regular, the Z-submodule
generated by the subsequences (g(kjn))n≥0 with j ≥ 0 is �nitely generated. Choose
an integer J ≥ 0 such that the subsequences (g(kjn))n≥0 with j = 0, 1, . . . , J generate
this submodule. Let α0, α1, . . . , αJ ∈ Z be such that

g(kJ+1n) =
J∑
j=0

αjg(kjn)

for all n ≥ 0. Using the fact that N is dense in Zp, we can equate the coe�cients of
the power series on both sides and obtain

am

(
k(J+1)m −

J∑
j=0

αjk
jm

)
= 0

for allm ≥ 0. However, the expression in the parentheses tends to in�nity asm→∞,
so only �nitely many am can be nonzero.

Moving on to the general case, by Strassman's Theorem each fi has only �nitely
many roots in Zpi . Therefore, we can �nd integers t ≥ 0 and c ≥ 0 such that for each
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i = 1, . . . , s the function fi(btx + c) of x ∈ Zpi has at most one root in Zp1 . Lemma
3.20 below shows that the sequence (νb(f(btn+ c)))n≥0 is periodic with period being
a power of b. Hence, there exists an integer T ≥ t such that (νb(f(bTn + c)))n≥0 is
a constant sequence with all terms equal to, say, v. This means that

Lb(f(bTn+ c)) = b−vf(bTn+ c)

for all n ≥ 0. Since we assume that (Lb(f(n)))n≥0 is k-regular, according to Proposi-
tion 1.14 and Theorem 1.9, the sequences (b−vfi(b

Tn+ c))n≥0 for i = 1, . . . , s are all
k-regular. By our earlier reasoning we deduce that each of the functions b−vfi(bTx+c)
is a polynomial in x, and thus also fi is a polynomial. The result follows.

This result motivates us to distinguish the subset Pb ⊂ Ab, de�ned by

Pb = {f = (f1, . . . , fs) : fi ∈ Qpi [X], fi 6= 0 for i = 1, . . . , s}.

Taking into account the results proved so far, we reformulate Questions 1 and 2 by
adding certain assumptions on the considered functions.

Questions:

1′. Let f ∈ Ab. When is (`b,d(f(n)))n≥0 a k-automatic sequence?

2′. Let f ∈ Pb. When is Lb(f(n))n≥0 a k-regular sequence?

Our main focus from now on is to answer Questions 1′ and 2′.

3.3 Prime power bases

In this section we address Questions 1′ and 2′ in the case where b = pl is a prime
power.

We let Rf denote the (�nite) set of roots of a function f ∈ Ap. For each root
θ ∈ Rf let mθ be its multiplicity and gθ ∈ Ap � the function such that

f(x) = (x− θ)mθgθ(x)

for all x ∈ Zp.
We now state the main results of the present section. The �rst theorem fully

answers Question 1′.

Theorem 3.5. Let f ∈ Ap, d ≥ 1 and let R′f be the subset of Rf de�ned by

R′f = {θ ∈ Rf : l - mθ or λ(pld) - pνp(gθ(θ)) mod lmθ}.

Then the sequence (`pl,d(f(n)))n≥0 is

(a) periodic, if R′f = ∅;
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(b) p-automatic and not k-automatic for k multiplicatively independent with p, if
∅ 6= R′f ⊂ Q;

(c) not k-automatic for any k ≥ 2 if R′f \Q 6= ∅.

We note that in the case l = 1 the form of R′f simpli�es to

R′f = {θ ∈ Rf : λ(pd) - mθ}.

As mentioned in Section 3.2, a corresponding result for p-adic locally analytic
functions can be derived from Theorem 3.5. The statement becomes more complicated
though, as in this case all the conditions need to be considered locally.

The second main theorem provides a complete classi�cation of all cases corre-
sponding to Question 2′. Note that in its statement Rf plays exactly the same role
as R′f in Theorem 3.5.

Theorem 3.6. Let f ∈ Pp. Then the sequence (Lpl(f(n)))n≥0 is

(a) k-regular for every k ≥ 2 if Rf = ∅;

(b) p-regular and not k-regular for k multiplicatively independent with p, if ∅ 6=
Rf ⊂ Q;

(c) not k-regular for any k ≥ 2 if Rf \Q 6= ∅.

In particular, the above conditions are independent of l.

We defer the proofs of both theorems to the end of this section.
Theorems 3.5 and 3.6 combined with the results of Bell, Shu and Yao reveal an in-

teresting connection between p-adic valuations and last nonzero digits of polynomials
and p-adic locally analytic functions evaluated at integers.

Corollary 3.7. Let f ∈ Pp be such that f has no root in N. Then the sequence
(νp(f(n)))n≥0 is p-regular if and only if the sequence (Lpl(f(n)))n≥0 is p-regular.

Proof. By Theorem 3.1 p-regularity of (νp(f(n)))n≥0 is equivalent to f having no roots
in Zp \Q. The result follows from Theorem 3.6.

Corollary 3.8. Let f be locally analytic on Zp with no root in N. Then the sequence
(νp(f(n)))n≥0 is p-regular if and only if for all d ≥ 1 the sequence (`pl,d(f(n)))n≥0 is
p-automatic.

Proof. By Proposition 3.2, we can �nd and integer R ≥ 0 such that for all a =
0, 1, . . . , pR − 1 the functions fa(x) = f(pRx + a) of x ∈ Zp are strictly analytic on
Zp. Moreover, the sequence (`pl,d(f(n)))n≥0 is p-automatic if and only if the sequence
(`pl,d(fa(n)))n≥0 is p-automatic for every a.

Now, for �xed a the latter sequence is p-automatic if and only if fa it satis�es the
condition (a) or (b) of Theorem 3.5 for all d ≥ 1, which is further equivalent to fa
having no roots in Zp\Q. This, by Theorem 3.1 is a necessary and su�cient condition
for p-regularity of (νp(fa(n)))n≥0.

Our claim follows from the fact that (νp(f(n)))n≥0 is p-regular if and only if all of
the above subsequences are p-regular.
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In particular, Corollary 3.8 can be applied to linear recurrence sequences whose p-
adic valuation is known to be p-regular (such examples are discussed in more detail in
Chapter 4) to deduce that their last nonzero digits in the base pl form a p-automatic
sequence. We note that although the family of strictly analytic functions collectively
interpolating a linear recurrence sequence cannot always be �glued� into a locally
analytic function, a similar argument involving subsequences along arithmetic pro-
gressions also works in this case. Unfortunately, it seems that a reasoning in the
opposite direction is hard to perform in practice, as determining last nonzero digits
usually requires computing the valuation �rst.

We now head towards proving Theorems 3.5 and 3.6. To begin, we give an overview
of the main tools used in the proofs. First of all, by (1.9), for f ∈ Ap we have the
factorization

f(x) =

∏
θ∈Rf

(x− θ)mθ

 g(x), (3.2)

where Rf denotes the (�nite) set of roots of f in Zp, the numbermθ is the multiplicity
of a root θ, and g ∈ Ap has no root in Zp. Obviously, if f is a polynomial with
coe�cients in Qp, then so is g.

Dealing with the case l ≥ 2, much of the time we will be relying on the factoriza-
tions

Lpl(x) = pνp(x) mod lLp(x), (3.3)

`pl,d(x) ≡ pνp(x) mod l`p,ld(x) (mod pld), (3.4)

valid for all nonzero x ∈ Qp, as proved in Section 2.2. These two formulas will often
be combined with the multiplicative properties of Lp and `p,δ, namely

Lp(xy) = Lp(x)Lp(x), (3.5)

`p,δ(xy) ≡ `p,δ(x)`p,δ(y) (mod pδ), (3.6)

for all x, y ∈ Qp. Here and in the sequel we write δ to denote the number of considered
digits in base p, whereas d plays the same role with respect to the base pl (usually
we will take δ = ld).

We are not going to apply the above formulas directly to f(n) factorized according
to (3.2). Instead, we will study last nonzero digits of p-adic strictly analytic functions
having at most one distinct root in Zp (and satisfying certain additional conditions).
This is justi�ed by Proposition 3.10 below. First, we give an auxiliary result, which
is an extension of a lemma by Shu and Yao [68, Lemma on p. 949].

Proposition 3.9. Let p be a prime and let f ∈ Ap be such that f has no root in Zp.
Then for any integer δ ≥ 1 there exists an integer T ≥ 0 such that we have

νp(f(pTx+ y)) = νp(f(y))

and
`p,δ(f(pTx+ y)) = `p,δ(f(y))

for all x, y ∈ Zp. In particular, the sequences (νp(f(n)))n≥0 and (`p,δ(f(n))n≥0 are
periodic with a period being a power of p.
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Proof. Theorem 1.22 implies that there exists an integer V ≥ 0 such that νb(f(x)) ≤ V
for all x ∈ Zp. Letting T be as in Proposition 1.24 applied to M = V + δ, we imme-
diately get both equalities. Periodicity follows by plugging in x = n, y = 1.

As a sidenote, Medina, Moll and Rowland [57] computed the minimal period of
(νp(f(n)))n≥0 in the special case when f is a polynomial with integer coe�cients
irreducible over Zp.

In the proof of Proposition 3.10 (and several further results) for θ ∈ Zp and j ≥ 0
integer we will be using the notation θ[j] = θ mod pj and θ{j} = p−j(θ − θ[j]). In
other words, θ[j] is represented by j initial digits in the p-adic expansion of θ, while
θ{j} is obtained from θ by deleting these digits.

Proposition 3.10. Let f ∈ Ap and let δ ≥ 1 be an integer. Then for each su�ciently
large integer T ≥ 0 and for each a = 0, 1, . . . , pT − 1 the function fa ∈ Ap, de�ned by

fa(x) = f(pTx+ a)

for x ∈ Zp, satis�es one of the following conditions:

(i) if a 6= θ[T ] for all θ ∈ Rf , then fa has no root in Zp;

(ii) if a = θ[T ] for some θ ∈ Rf , then

fa(x) = pTmθ (x− θ{T})mθ gθ(pTx+ θ[T ]), (3.7)

where gθ(p
Tx+ θ[T ]) additionally satis�es

νp(gθ(p
Tx+ θ[T ])) = νp(gθ(θ)), (3.8)

`p,δ(gθ(p
Tx+ θ[T ])) = `p,δ(gθ(θ)) (3.9)

for all x ∈ Zp.

Proof. If f has no roots in Zp, we can take T = 0 so that the condition (i) is satis�ed.
If f has a root in Zp, we �rst �nd an integer t ≥ 0 such that for each θ ∈ Rf the

function gθ(ptx + θ[t]) of x has no root in Zp. In the case when f has precisely one
distinct root, we can choose arbitrary t ≥ 0. Otherwise, let t be any such that

t > max{νp(θ − σ) : θ, σ ∈ Rf , θ 6= σ}.

For each θ ∈ Rf let Tθ be the integer obtained from Proposition 3.9 applied to
the function gθ(ptx+ θ[t]). Choosing any integer T ≥ t+ maxθ∈Rf Tθ, we see that for
all θ ∈ Rf the values νp(gθ(pTx + θ[T ])) and `p,δ(gθ(pTx + θ[T ])) are constant with
respect to x ∈ Zp. By continuity of g, we get (3.8) and (3.9). As a result, for each
a = 0, 1, . . . , pT − 1 one of the conditions (i),(ii) is satis�ed.

We now discuss how Proposition 3.10 a�ects our approach. First, let f ∈ Ap
and consider the sequence (`pl,d(f(n)))n≥0. It is k-automatic if and only if for each
a = 0, 1, . . . , pT − 1 the sequence (`pl,d(f(pTn + a)))n≥0 is k-automatic. Moreover, if
a 6= θ[T ] for any θ ∈ Rf , then by (3.4) and Proposition 3.9 (`pl,d(f(pTn+ a)))n≥0 is a
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periodic sequence, hence k-automatic for every k ≥ 2. For the same reason, the factor
gθ(p

Tx+θ[T ]) in (3.7) does not a�ect automaticity of (`pl,d(f(pTn+a)))n≥0 in the case
when a 6= θ[T ]. An analogous observation regarding regularity of (Lpl,d(f(n)))n≥0 for
f ∈ Pp also turns out to be true (this is explained in more detail in the proof of
Theorem 3.6).

All things considered, in essence it remains to study last nonzero digits of the ex-
pression pTmθ (x− θ{T})mθ in (3.7), which can be written in a general form pv(n− θ)m
with m, v integers such that m ≥ 1, v ≥ 0 and θ ∈ Zp. We investigate its properties
in a series of lemmas. In the proofs of Theorems 3.5 and 3.6 we will combine all the
intermediate results into a statement concerning a general function f ∈ Ap.

We start with a useful technical result which more or less says that a p-adic integer
θ is uniquely determined by the values νp(n−θ) mod l as well as `p,δ(n−θ) with n ∈ N.

Lemma 3.11. Let θ, σ ∈ Zp be such that θ 6= σ and let l ≥ 2, δ ≥ 1 be integers. Then

(i) there exist in�nitely many integers n ≥ 0 such that νp(n − θ) 6≡ νp(n − σ)
(mod l);

(ii) for any x ∈ (Z/pδZ)× such that x 6= `p,δ(θ − σ) there exist in�nitely many
integers n ≥ 0 such that `p,δ(n− θ) = x and `p,δ(n− σ) = `p,δ(θ − σ).

Proof. Let v = νp(θ − σ). In part (i) we put n = pv+1(1 + pt) + θ[v + 2], where t ≥ 1
is an arbitrary integer. This yields νp(n− θ) = v + 1 and νp(n− σ) = v.

Part (ii) is vacuously true if p = 2 and δ = 1. If this is not the case, we choose
n = pv+δ(x+ pδt) + θ[v + 2δ], obtaining

`p,δ(n− θ) = `p,δ(x+ pδ(θ{v + 2δ}+ t)) = x

and

`p,δ(n− σ) = `p,δ(p
δx+ p2δ(θ{v + 2δ}+ t) + p−v(θ − σ)) = `p,δ(θ − σ),

as desired.

We let λ denote the Carmichael function, which assigns to each positive integer n
the least positive integer m such that am ≡ 1 (mod n) for all integers a coprime with
n. In particular, when n = pl is a prime power, we have

λ(pl) =

{
pl−1(p− 1) if p 6= 2 or p = 2, l ≤ 2,

2l−2 if p = 2, l ≥ 3.

In the following two lemmas we study periodicity of last nonzero digits in base pl

of expressions of the form pv(n − θ)m. It turns out that the conditions l | m and
λ(pld−v) | m, which almost immediately imply periodicity of (`pl,d(p

v(n − θ)m))n≥0,
are also necessary.

Lemma 3.12. Let m ≥ 1, l ≥ 1 be integers and let θ ∈ Zp \ N. The following
conditions are equivalent:
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(i) the sequence (νp((n− θ)m) mod l)n≥0 is eventually periodic;

(ii) νp((n− θ)m) ≡ 0 (mod l) for all n ≥ 0;

(iii) l | m.

Proof. If l = 1, then all three conditions are always satis�ed, so in what follows we
assume that l ≥ 2.

Obviously, (iii) implies (ii) and (ii) implies (i).
It remains to show the implication from (i) to (iii). For the sake of contradiction,

suppose that (νp((n − θ)m) mod l)n≥0 is eventually periodic with period T > 0, but
l - m. Recall that the image under a coding of a k-automatic sequence is again k-
automatic. Since there is a bijection mapping the values νp(xm) = mνp(x) modulo l
to the values νp(x) modulo l/ gcd(m, l), without loss of generality we may consider
m = 1.

Lemma 3.11(i) with σ = θ−T shows that the congruence νp(n+T−θ) ≡ νp(n−θ)
(mod l) does not hold for in�nitely many n, which gives a contradiction with eventual
periodicity of the sequence (νp((n− θ)m) mod l)n≥0.

Lemma 3.13. Let d,m, l, v be integers such that d ≥ 1, m ≥ 1, and 0 ≤ v < l. Let
θ ∈ Zp \ N. The following conditions are equivalent:

(i) the sequence (`pl,d(p
v(n− θ)m))n≥0 is eventually periodic;

(ii) `pl,d(pv(n− θ)m) = pv for all n ≥ 0;

(iii) l | m and λ(pld−v) | m.

Proof. The implication from (ii) to (i) is trivial.
If the condition (iii) holds, then νp(pv(n− θ)m) mod l = v and

`p,ld((n− θ)m) ≡ 1 (mod pld−v)

for all n ≥ 0. Using (3.4) and (3.6), we obtain (ii).
Now assume that the sequence (`pl,d(p

v(n − θ)m))n≥0 is eventually periodic with
period T . Then (νp(p

v(n − θ)m) mod l)n≥0 is also eventually periodic, so l | m by
Lemma 3.12.

Suppose that λ(pld−v) - m. Lemma 3.11(ii) applied to x ∈ (Z/pldZ)× such that
xm 6≡ (`p,ld(T ))m (mod pld−v) and σ = θ − T gives arbitrarily large n satisfying

`pl,d(p
v(n+ T − θ)m) 6= `pl,d(p

v(n− θ)m).

We get a contradiction, so λ(pld−v) | m, and thus (i) implies (iii).

We now move on to the question of automaticity and regularity of last nonzero
digits of the expression pv(n−θ)m for consecutive n. First, we show that the resulting
sequences are p-regular or p-automatic when θ is rational.
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Lemma 3.14. Let θ ∈ Q∩Zp. Let m, l, v be integers such that m ≥ 1 and 0 ≤ v < l.
Then the sequence (Lpl(pv(n − θ)m))n≥0 is p-regular and for all d ≥ 1 the sequence
(`pl,d(p

v(n− θ)m))n≥0 is p-automatic.

Proof. Theorem 1.9 together with Remark 1.10 show that without loss of generality
we may consider θ 6∈ N (by replacing n with n + θ + 1 if θ ∈ N). The equality (3.3)
yields

Lpl(pv(n− θ)m) = p(v+mνp(n−θ)) mod lLp((n− θ)m). (3.10)

By Theorem 3.1 the sequence (νp(n − θ))n≥0 is p-regular, and thus becomes p-
automatic when reduced modulo l. This means that the �rst factor on the right-hand
side of (3.10) is p-automatic, hence p-regular.

We now consider the second factor. Write θ = c/a in lowest terms with a positive.
We have

Lp(n− θ) = Lp
(
an− c
a

)
= Lp(an− c)Lp

(
1

a

)
.

By Proposition 2.9 and Theorem 1.9 the sequence (Lp(an− c))n≥0 is p-regular. Due
to Remark 1.10 this is true even if c > 0, in which case an − c can take negative
values. Hence, (Lp(n− θ))n≥0 is also p-regular. By the multiplicative property (3.5)
of Lp we obtain Lp((n − θ)m) = (Lp(n − θ))m, which means that (Lp((n − θ)m))n≥0
is p-regular as the termwise product of p-regular sequences. Our claim follows.

On the other hand, if θ is an irrational p-adic integer, the resulting sequence of
last nonzero digits turns out to be nonautomatic (or nonregular), unless the condition
in Lemma 3.13(iii) is satis�ed. This is exhibited in the next two lemmas.

Lemma 3.15. Let θ ∈ Zp \Q and let m ≥ 1, l ≥ 2 be integers such that l - m. Then
the sequence (νp((n− θ)m) mod l)n≥0 is not automatic.

Proof. Similarly as in the proof of Lemma 3.12 it is su�cient to prove the assertion
in the case m = 1 and l ≥ 2.

Let k ≥ 2 and write k = pec, where e ≥ 0 and νp(c) = 0. By Theorem 1.5
a sequence is k-automatic if and only if it is kt-automatic, so without loss of generality
we can assume that l | e. We will show that for all integers j ≥ 0 the subsequences
(νp(k

jn + θ[ej] − θ) mod l)n≥0 from the k-kernel are distinct. Their terms may be
simpli�ed to the form

νp(p
ejcjn+ θ[ej]− θ) ≡ ej + νp(n− c−jθ{ej}) ≡ νp(n− c−jθ{ej}) (mod l).

Hence, for any �xed i, j ≥ 0 with j 6= i it is enough to �nd n ≥ 0 such that

νp(n− c−jθ{ej}) 6≡ νp(n− c−iθ{ei}) (mod l). (3.11)

Because θ is irrational, we have c−jθ{ej} 6= c−iθ{ei}, and thus Lemma 3.11(i) gives
a value of n for which (3.11) holds. Consequently, (νp((n− θ)m) mod l)n≥0 is not a
k-automatic sequence.
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Lemma 3.16. Let d,m, l, v be integers such that d ≥ 1, m ≥ 1, and 0 ≤ v < l. Let
θ ∈ Zp \ Q. If l - m or λ(pld−v) - m, then the sequence (`pl,d(p

v(n − θ)m))n≥0 is not
automatic.

Proof. If l - m, then the result follows by Lemma 3.15, as k-automaticity of the
sequence (`pl,d(p

v(n− θ)m))n≥0 entails k-automaticity of (νp((n− θ)m))n≥0.
Otherwise, if l | m, then we must have λ(pld−v) - m. Again, take k ≥ 2 and write

k = pec, where e ≥ 0 and νp(c) = 0. Replacing k by kλ(p
ld) if necessary, we may

assume that c ≡ 1 (mod pld). We want to show that for j ≥ 0 the subsequences
(`pl,d(p

v(kjn+ θ[ej]− θ)m))n≥0 from the k-kernel are all distinct.
By l | m we obtain

`pl,d(p
v(kjn+ θ[ej]− θ)m) ≡ pv(`p,ld(n− c−jθ{ej}))m (mod pld).

Hence, it is su�cient to prove that for j ≥ 0 there are in�nitely many distinct
sequences of the form ((`p,ld−v(n− c−jθ{ej}))m)n≥0.

Take any i, j ≥ 0, where i 6= j. Let x ∈ (Z/pld−vZ)× be such that

xm 6≡ (`p,ld−v(c
−jθ{ej} − c−iθ{ei}))m (mod pld−v).

Then from Lemma 3.11(ii) we get an integer n ≥ 0 satisfying

(`p,ld−v(n− c−jθ{ej}))m 6≡ (`p,ld−v(n− c−iθ{ei}))m (mod pld−v),

and the result follows.

We are now ready to prove Theorems 3.5 and 3.6.

Proof of Theorem 3.5. The case where f has no roots in Zp falls under (a). Then
Proposition 3.9 ensures that both factors on the right side of

`pl,d(f(n)) ≡ pνp(f(n)) mod l`p,ld(f(n)) (mod pld)

are periodic with respect to n, and the result follows.
Now assume that f has at least one root in Zp. Similarly as in the proof of Lemma

3.14, without loss of generality we may assume that the roots of f do not lie in N (by
replacing n with n+M for some su�ciently large integer M).

Let T be as in Proposition 3.10 and divisible by l. We are going to examine the
subsequences (`pl,d(f(pTn+ a)))n≥0 with a ranging over {0, 1, . . . , pT − 1}.

If there is no θ ∈ Rf such that a = θ[T ], then the function f(pTx+a) has no root
in Zp, so the sequence (`pl,d(f(pTn + a)))n≥0 is periodic, as has been already shown.
Hence, the sequence (`pl,d(f(n)))n≥0 is eventually periodic (resp. k-automatic) if and
only if all the remaining subsequences (`pl,d(f(pTn + θ[T ])))n≥0 with θ ∈ Rf are
eventually periodic (resp. k-automatic).

For θ ∈ Rf denote vθ = νp(gθ(θ)) mod l and `θ = `p,ld(gθ(θ)). Then for all n ≥ 0
we have

`pl,d(p
−vθg(pTn+ θ[T ])) = `θ,
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as in the statement of Proposition 3.10.
Therefore, applying the function `pl,d to both sides of the equality (3.7), we obtain

`pl,d(f(pTn+ θ[T ])) ≡ `pl,d(p
vθ(n− θ{T})mθ)`θ (mod pld) (3.12)

(here we used l | T and property (ii) of Lemma 2.5). We point out that θ 6∈ N also
implies θ{T} 6∈ N.

Now we move on to consider the cases (a) � (c) separately. In the case (a) we have
l | mθ and λ(pld) | pvθmθ for every θ ∈ Rf . The congruence (3.12) then becomes

`pl,d(f(pTn+ θ[T ])) ≡ pvθ`θ (mod pld),

and periodicity of (`pl,d(f(n)))n≥0 follows.
In the case (b), if θ ∈ Rf is irrational, then again l | mθ, λ(pld) | pvθmθ and the

reasoning is exactly the same as in the previous case. For each θ ∈ Q ∩ Rf the �rst
factor on the right-hand side of (3.12) is p-automatic by Lemma 3.14. Hence, the
sequence (`pl,d(f(n)))n≥0 is p-automatic.

Now if this sequence were k-automatic for some k multiplicatively independent
with p, then by Cobham's Theorem it would be eventually periodic. Choose θ ∈ R′f .
If l - mθ, then eventual periodicity of (3.12) is ruled out by Lemma 3.12. If l | mθ,
the we must have λ(pld) - pvθmθ and again, (3.12) cannot be eventually periodic due
to Lemma 3.13.

In the case (c) we choose θ ∈ R′f \ Q. In the same way as above, Lemmas 3.15
and 3.16 imply that the right-hand side of (3.12) is not automatic.

Proof of Theorem 3.6. In the case (a) the sequence (p−νpl (f(n)))n≥0 is periodic by
Lemma 3.9, and thus k-regular for every k. This is also the case for (f(n))n≥0 by
Corollary 1.13. Therefore (Lpl(f(n)))n≥0 is also k-regular as the termwise product of
k-regular sequences.

In the case (b), by the same argument as in the proof of Theorem 3.5 we may
assume that the roots of f do not lie in N. We have

Lpl(f(n)) = pνp(f(n)) mod lLp(f(n))

for all n ≥ 0. The �rst factor on the right hand-side is p-regular because of Theorem
3.1.

In order to prove that the second factor is p-regular as well, write f in the form

f(x) =

∏
θ∈Rf

(x− θ)mθ

 g(x),

where g is a polynomial irreducible over Zp. Multiplicativity of Lp yields

Lp(f(n)) =

∏
θ∈Rf

Lp((n− θ)mθ)

Lp(g(n)).
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The sequence (Lp(g(n)))n≥0 is p-regular, as in the case (a). Such claim is also true
for each of the sequences (Lp((n − θ)mθ))n≥0 due to Lemma 3.14. In consequence,
(Lpl(f(n)))n≥0 is p-regular.

Now let k be multiplicatively independent with p and take d large enough so that
case (b) of Theorem 3.5 is satis�ed. Then (`pl,d(f(n)))n≥0 is not k-automatic. Using
the fact that a k-regular sequence of p-adic integers reduced modulo a power of p
is necessarily k-automatic (this follows from Theorem 1.3 and Proposition 1.15), we
obtain the result.

Case (c) follows in the same way from case (c) of Theorem 3.5.

3.4 Bases with several prime factors

In this section we turn to the case when b is a positive integer base with s ≥ 2 distinct
prime factors. We write the prime factorization of b in the form

b = pl11 · · · plss ,

where p1, . . . , ps are distinct primes and l1, . . . , ls are positive integers. For i = 1, . . . , s
we put bi = plii and let ri be an integer such that

ri
b

bi
≡ 1 (mod bdi )

(this is consistent with the notation in Section 2.2).
To begin, we state the main results of the present section, which provide complete

answers to Questions 1′ and 2′ for such b. Their proofs are given at the end of the
section.

Theorem 3.17. Let f = (f1, . . . , fs) ∈ Ab. We have the following.

(a) If for some i the function fi has no root in Zpi, then for all d ≥ 1 the sequence
(`b,d(f(n)))n≥0 is periodic.

(b) Assume that there exists θ ∈ Q ∩ Zb such that for each i = 1, . . . , s the number
θ is the only root of fi in Zpi and has multiplicity mi ≥ 1. Let w1, . . . , ws be
positive integers satisfying m1w1 = . . . = msws and put k = bw1

1 · · · bwss . Then
for all d ≥ 1 the sequence (`b,d(f(n)))n≥0 is k-automatic and not l-automatic
for any l ≥ 2 multiplicatively independent with k.

(c) Otherwise, the sequence (`b,d(f(n)))n≥0 is not k-automatic for any d ≥ 1 and
k ≥ 2.

Theorem 3.18. Let f = (f1, . . . , fs) ∈ Pb. We have the following.

(a) If for some i the polynomial fi has no root in Zpi, then the sequence (Lb(f(n)))n≥0
is k-regular for every k ≥ 2.
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(b) Assume that there exists θ ∈ Q ∩ Zb and an integer m ≥ 1 such that for each
i = 1, . . . , s the number θ is the only root of fi in Zpi and has multiplicity m.
Then the sequence (Lb(f(n)))n≥0 is b-regular and not l-regular for any l ≥ 2
multiplicatively independent with b.

(c) Otherwise, the sequence (Lb(f(n)))n≥0 is not k-regular for any k ≥ 2.

A comparison of the above results with Theorems 3.5 and 3.6, shows that the case
when b has several prime factors is not a simple generalization of the case b = pl.
For instance, in contrast to the case where b is a prime power, the number of digits d
does not a�ect k-automaticity of the sequence (`b,d(f(n)))n≥0. Moreover, for f �xed,
changing the exponents li in the prime factorization of b has no e�ect on which of the
cases (a)�(c) occurs in either of Theorems 3.17 and 3.18. A more detailed discussion
on this topic is carried out in Section 3.5.

The overall structure of our reasoning is largely the same as in the previous section,
however the details are rather di�erent, as expected. For convenience we split the
argument into shorter, more manageable parts.

Regularity of (Lb(f(n)))n≥0 for f ∈ Pb, as well as automaticity (or periodicity) of
(`b,d(f(n)))n≥0 for f ∈ Ab satisfying appropriate conditions will follow from a direct
calculation.

On the other hand, proving nonautomaticity and nonregularity (or nonperiodicity)
requires more e�ort. Rather than directly studying last nonzero digits of f(n), we
will use their characterization given in Corollary 2.7. For d = 1 this result says that
νbi(`b(f(n))) = 0 if and only if νbi(fi(n)) = νb(f(n)). In other words, the characteristic
sequence of the set

{n ≥ 0 : νbi(fi(n)) = νb(f(n))}

(or its complement in N) is for each i = 1, . . . , s the image under a coding of
(`b(f(n)))n≥0. Hence, if this characteristic sequence is not k-automatic (or not even-
tually periodic), then neither is (`b(f(n)))n≥0. Since νb(x) = min1≤i≤s νbi(xi) for
x = (x1, . . . , xi) ∈ Qb, in order to make use of the above observation we need to
investigate inequalities between the values νbi(fi(n)). In this regard, the following
technical lemma can be viewed as a counterpart of Lemma 3.11 from the previous
section.

Lemma 3.19. Let ρi, σi ∈ Zpi for i = 1, . . . , s. Let m1, . . . ,ms be nonnegative
integers and A,B arbitrary integers. If ρj 6= σj for some j ∈ {1, . . . , s}, then there
exist in�nitely many nonnegative integers n such that

νbj((n− ρj)mj) + A ≤ min
i 6=j

νbi((n− ρi)mi)

and
νbj((n− σj)mj) +B > min

i 6=j
νbi((n− σi)mi).
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Proof. Without loss of generality let j = 1. It is su�cient to �nd in�nitely many n
satistying the following system of inequalities:

νb2((n− σ2)m2) < νb1((n− σ1)m1) +B,

νb1((n− ρ1)m1) + A ≤ νb2((n− ρ2)m2),

νb1((n− ρ1)m1) + A ≤ νb3((n− ρ3)m3),

...

νb1((n− ρ1)m1) + A ≤ νbs((n− ρs)ms).

(3.13)

For each i = 1, . . . , s the set of possible values of νbi(x
mi) with x ∈ Zpi , x 6= 0 is

Vi = {bmik/lic : k ∈ N}. An application of the Chinese Remainder Theorem shows
that for any choice v1 ∈ V1, . . . , vs ∈ Vs there exist in�nitely many integers n ≥ 0
such that 

νb1((n− σ1)m1) = v1,

νb2((n− ρ2)m2) = v2,

...

νbs((n− ρs)ms) = vs.

If ρ2 6= σ2, then the left side of each of the inequalities (3.13) remains bounded for
su�ciently large v1, . . . , vs, while the right side grows to in�nity as v1, . . . , vs increase.
Hence, for v1, . . . , vs large enough we obtain a suitable value of n.

Otherwise, if ρ2 = σ2, then the �rst two inequalities in (3.13) can be written as

νb1((n− ρ1)m1) + A ≤ νb2((n− ρ2)m2) < νb1((n− σ1)m1) +B.

As before, we take large v1, . . . , vs, where additionally v2 < v1 +B.

In the following lemma we study periodicity of the sequence (`b,d(f(n)))n≥0 for
f = (f1, . . . , fs) ∈ Ab. Here and in a few later results we assume that each function fi
has at most one distinct root in Zpi (and possibly some additional properties). Due to
an analogue of Proposition 3.10, we will eventually be able to combine these special
cases into to a result for general f in the proofs of Theorems 3.17 and 3.18.

Lemma 3.20. Let f ∈ Ab be such that each of the functions fi has at most one root
in Zpi (possibly with multiplicity). The following conditions are equivalent:

(i) for all d ≥ 1 the sequence (`b,d(f(n)))n≥0 is periodic;

(ii) for all d ≥ 1 the sequence (`b,d(f(n)))n≥0 is eventually periodic;

(iii) for some i ∈ {1, . . . , s} the function fi has no root in Zpi;

(iv) the sequence (νb(f(n)))n≥0 is periodic.

Furthermore, a power of b can be chosen as a period in (i), (ii), and (iv).

56



Proof. Obviously, (i) implies (ii).
Next, we show by contraposition that (ii) implies (iii). By the discussion before

Lemma 3.19 it is enough to prove that the characteristic sequence of the set {n ≥ 0 :
νb1(f1(n)) = νb(f(n))} is not eventually periodic.

Assume that for each i = 1, . . . , s the function fi has precisely one root θi ∈ Zpi
and let mi ≥ 1 denote its multiplicity. Write

fi(x) = (x− θi)migi(x),

where x ∈ Zpi , the function gi is strictly analytic on Zpi and gi(θi) 6= 0. Let G ≥ 1 be
an integer such that |νbi(gi(x))| < G for all i = 1, . . . , s and x ∈ Zpi . Then for each
i = 1, . . . , s and n ≥ 0 (with the exception of n = θi in the case θi ∈ N) we obtain

|νbi(fi(n))− νbi((n− θi)mi)| ≤ G.

Here we used the fact that νbi(x) + νbi(y) ≤ νbi(xy) ≤ νbi(x) + νbi(y) + 1 for any
x, y ∈ Qpi .

Therefore, the inequality

νb1((n− θ1)m1) + 2G ≤ min
2≤i≤s

νbi((n− θi)mi)

implies νb1(f1(n)) = νb(f(n)), while

νb1((n− θ1)m1)− 2G > min
2≤i≤s

νbi((n− θi)mi)

implies νb1(f1(n)) > νb(f(n)).
Suppose that (`b,d(f(n)))n≥0 is eventually periodic with period T > 0. Lemma

3.19 applied to j = 1, ρi = θi, σi = θi − T,A = 2G,B = −2G shows that there exists
arbitrarily large n such that νb1(f1(n)) = νb(f(n)) but νb1(f1(n+T )) > νb(f(n+T )).
Thus, we obtain a contradiction and (iii) follows.

We now show that (iii) implies (i). Take any integer d ≥ 1. By (2.5) for every
i = 1, . . . , s we have

`b,d(f(n)) ≡ b
νbi (fi(n))−νb(f(n))
i r

νb(f(n))
i `bi,d(fi(n)) (mod bdi ). (3.14)

It is enough to prove that for each i = 1, . . . , s the expression on the right in (3.14)
reduced modulo bdi is periodic with respect to n.

By the assumption there exists an integer V such that νb(f(n)) ≤ V for all n ≥ 0.
Choose i ∈ {1, . . . , s}. Proposition 1.24 applied to M = li(V + d) provides an integer
Ti ≥ 0 such that for all n ≥ 0 we have

νbi(fi(n+ pTii )− fi(n)) ≥ V + d.

Letting π = pT11 · · · pTss , we can write

fi(n+ π) = fi(n) + bV+d
i hi(n),
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where hi(n) ∈ Zpi . From this we see that the expression min{νbi(fi(n)), V + d} is
periodic with period π. Thus, so is νb(f(n)) = min1≤i≤s νbi(fi(n)) and also the factor
r
νb(f(n))
i reduced modulo bdi .
Now let γi(n) be the product of the remaining factors in (3.14):

γi(n) = b
νbi (fi(n))−νb(f(n))
i `bi,d(fi(n)).

By the earlier considerations, the expression min{νbi(fi(n))− νb(f(n)), d} is periodic
with period π.

Hence, if νbi(fi(n))− νb(f(n)) ≥ d, then

γi(n) ≡ 0 ≡ γi(n+ π) mod bdi .

Otherwise, if νbi(fi(n))−νb(f(n)) < d, then we have νbi(fi(n)) < V +d, so νbi(fi(n)) =
νbi(fi(n+ π)). It follows that

`bi,d(fi(n+ π)) ≡ `bi,d(fi(n)) + b
V+d−νbi (fi(n))
i hi(n) (mod bdi ).

Multiplying both sides of this congruence by

b
νbi (fi(n+π))−νb(f(n+π))
i = b

νbi (fi(n))−νb(f(n))
i ,

we again obtain
γi(n) ≡ γi(n+ π) mod bdi .

Therefore, (γi(n))n≥0 is periodic and our claim follows.
Finally, we prove the equivalence of (iii) and (iv). As we have already seen in the

proof of the previous implication, (iv) follows from (iii).
Now, for the sake of contradiction assume that (νb(f(n)))n≥0 is periodic but each

of the functions fi has a root in θi ∈ Zpi . Let (nl)n≥0 be a sequence of nonnegative
integers such that nl ≡ θi (mod bli) for all i = 1, . . . , s. Then the values νb(f(nl)) are
unbounded, thus we obtain a contradiction.

In the above considerations, the number π is a common period in (i), (ii), and
(iv). By taking its suitable multiple, we see that a power of b is also a period.

The following result is a partial analogue of Lemma 3.20 for f ∈ Pb.

Lemma 3.21. Let f = (f1, . . . , fs) ∈ Pb. If fi has no root in Zpi for some i ∈
{1, . . . , s}, then the sequence (Lb(f(n)))n≥0 is k-regular for every k ≥ 2.

Proof. By Lemma 3.20, the sequence (νb(f(n)))n≥0 is periodic. Let π > 0 be a period
of this sequence. Then for each a = 0, 1, . . . , π − 1 the function

Lb(f(πx+ a)) = b−νb(f(a))f(πx+ a)

of x ∈ Q ∩ Zb is an element of Pb. Therefore, each component of (Lb(f(πn+ a)))n≥0
is a k-regular sequence for every k as a sequence of values of a polynomial evaluated
at consecutive integers. This also implies k-regularity of (Lb(f(πn+ a)))n≥0 and the
result follows.
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We now proceed to prove k-automaticity of (`b,d(f(n)))n≥0 with a special value of
k for certain f ∈ Ab.

Lemma 3.22. Let θ ∈ Q∩Zb and d ≥ 1. Let f = (f1, . . . , fs) ∈ Ab and assume that
for each i = 1, . . . , s the function fi is of the form

fi(x) = (x− θ)migi(x),

where mi ≥ 1 is an integer and gi is strictly analytic on Zpi and such that νpi(gi(x)),
`bi,d(gi(x)) are constant with respect to x ∈ Zpi. Let k = bw1

1 · · · bwss , where w1, . . . , ws
are positive integers satisfying

m1w1 = . . . = msws.

Then the sequence (`b,d(f(n)))n≥0 is k-automatic.

Proof. Writing θ = t/u in lowest terms with u > 0, we obtain

fi(n) =
1

umi
(un− t)migi(n) = hi(un− t),

where
hi(x) =

1

umi
ymigi

(x
u

+ θ
)

for x ∈ Zpi . By Theorem 1.9 (and Remark 1.10) the problem can be reduced to
studying k-automaticity of the sequence (`b,d(h(n)))n≥0, where h = (h1, . . . , hs) ∈ Ab.
Replacing h by f , from now on we assume that

fi(x) = xmigi(x).

Put
ci = p

νpi (gi(x))

i `bi,d(gi(x)),

which does not depend on y for i = 1, . . . , s, and let D be the common value of miwi.
Recall that a sequence is k-automatic if and only if it is kt-automatic. Raising k to
a suitable power, we may thus assume that `bi,d(k) = 1 and D is such that rDi ≡ 1
(mod bdi ) for all i = 1, . . . , s.

We consider the subsequences (`b,d(fi(kn + a)))n≥0 with a = 0, 1, . . . , k − 1. For
a = 0 we have

νbi(fi(kn)) = D + νbi(fi(n)),

and thus also
νb(f(kn)) = D + νb(f(n)).

As a result, we obtain

r
νbi (fi(kn))

i ≡ r
νbi (fi(n))

i (mod bdi )

and
`bi,d(fi(kn)) ≡ `bi,d(k

mi)`bi,d (cin
mi) ≡ `bi,d(fi(n)) (mod bdi ).
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By the above identities combined with Lemma 2.6 applied to f(n) and f(kn), we get

`b,d(f(kn)) = `b,d(f(n)).

Now choose a ∈ {1, . . . , k − 1}. Then for some i we have νpi(a) < νpi(k), so the
function fi(ky+a) of y has no root in Zpi . Lemma 3.20 implies that (`b,d(f(kn+a)))n≥0
is periodic. Consequently, (`b,d(f(n)))n≥0 is k-automatic by an argument similar as
in Proposition 2.9.

A similar assertion can also be made about (Lb(f(n)))n≥0 when the components
of f ∈ Pb admit a simple form. Note that unlike in Lemma 3.22 we only consider
b-regularity. We will see later (in Lemma 3.26 below) why this is the case.

Lemma 3.23. Let θ ∈ Q ∩ Zb. Let f = (f1, . . . , fs) ∈ Pb and assume that for each
i = 1, . . . , s the function fi is of the form

fi(x) = ci(x− θ)m, (3.15)

where m ≥ 1 is an integer and ci ∈ Qpi. Then the sequence (Lb(f(n)))n≥0 is b-regular.

Proof. For the same reason as in the proof Lemma 3.22, without loss of generality we
can set θ = 0.

We examine the subsequences (Lb(f(bn + a)))n≥0 with a = 0, 1, . . . , b− 1. In the
case a = 0 we obtain

Lb(f(bn)) = Lb(f(n)).

On the other hand, if a 6= 0, then for some i the polynomial fi(bx+a) has no root
in Zpi , so b-regularity of the sequence (Lb(f(bn+ a)))n≥0 follows by Lemma 3.21.

We deduce that (Lb(f(n)))n≥0 is b-regular precisely in the same way as in Propo-
sition 2.9.

Lemma 3.24. Let f = (f1, . . . , fs) ∈ Ab be such that that for each i = 1, . . . , s the
function fi is of the form

fi(x) = (x− θi)migi(x),

where θi ∈ Zpi, mi ≥ 1 is an integer, and gi is strictly analytic with no root in
Zpi. If the roots θ1, . . . , θs are not all equal, then the sequence (`b(f(n)))n≥0 is not
k-automatic for any k ≥ 2.

Proof. Without loss of generality we can assume that none of the roots θi lies in N
by replacing x with x+M if necessary, where M is a su�ciently large integer.

Let k ≥ 2 be an integer. By raising k to a suitable power, we may assume that it
is of the form

k = bw1
1 · · · bwss c,

where w1, . . . , ws, c are nonnegative integers and gcd(b, c) = 1.
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We simultaneously approximate the pi-adic integers θi by the sequence of integers
(nl)l≥0 given by 

nl ≡ θ1 (mod bw1l
1 ),

...

nl ≡ θs (mod bwsls ),

where 0 ≤ nl < (bw1
1 · · · bwss )l ≤ kl. We will show that there exist in�nitely many

distinct subsequences of the form (`b(f(kln+nl)))n≥0 with l ≥ 0. In order to do this,
we study inequalities between the valuations νbi(fi(k

ln+ nl)).
Let G ≥ 1 be an integer such that |νbi(gi(x))| < G for all i = 1, . . . , s and x ∈ Zpi .

Also write θi{l} = (θi − nl)/k
l, analogously to the notation used in the previous

section. Then for every n ≥ 0 we have∣∣νbi(fi(kln+ nl))− νbi ((n− θi{l})mi)−miwil
∣∣ ≤ G. (3.16)

Choose any pair of integers l,m such that m > l ≥ 0. We have θi{l} = θi{m} if
and only if

θi =
klnm − kmnl
kl − km

and this expression does not depend on i. By the assumption that θ1, . . . , θs are not
all equal, for some index j ∈ {1, . . . , s} (depending on l,m) we have θj{l} 6= θj{m}.

Just like in the proof of Lemma 3.20, we use the inequality (3.16) in conjunction
with Lemma 3.19 (with ρi = θi{l}, σi = θi{m} and appropriate A,B) to conclude
that there exists an integer n ≥ 0 such that

νbj(fj(k
ln+ nl)) = νb(f(kln+ nl))

and
νbj(fj(k

mn+ nm)) > νb(f(kmn+ nm)).

This implies that
`b(f(kln+ nl)) 6= `b(f(kmn+ nm))

and our claim follows.

We now state a technical result, which essentially says that for any base k the
k-adic expansion of a rational number is eventually periodic. A proof for a prime
base is given in the notes of Conrad [23] and can be adapted to the general case.
Nevertheless, for completeness we provide an alternative (shorter) proof. First, we
set some notation, also used in a few subsequent results. Let θ ∈ Q ∩ Zk. For each
integer l ≥ 0 we write θ[l, k] = θ mod kl and θ{l, k} = (θ − θ[l, k])/kl. For simplicity,
k will be suppressed from the notation whenever it does not cause ambiguity.

Lemma 3.25. Let k ≥ 2 be an integer and θ ∈ Q ∩ Zk. Then

(i) for all integers l ≥ 0, m ≥ 0 we have (θ{l +m, k}) = (θ{l, k}){m, k};

(ii) the sequence (θ{l, k})l≥0 is eventually periodic.
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Proof. Considering k �xed, we omit it from the notation. Part (i) is shown by in-
duction on m with l ≥ 0 �xed. If m = 0 then the assertion holds. We also provide
a proof for m = 1, as it will be needed either way. Write θ[l+ 1] = kla+ θ[l] for some
a ∈ {0, 1, , . . . , k − 1}. We have

(θ{l})[1] =

(
θ − θ[l + 1] + kla

kl

)
[1] = a =

θ[l + 1]− θ[l]
kl

.

Therefore,

(θ{l}){1} =
θ{l} − (θ{l})[1]

k
=

θ−θ[l]
kl
− θ[l+1]−θ[l]

kl

k
= θ{l + 1}.

Now if (i) holds for some m ≥ 0, then

(θ{l}){m+ 1} = ((θ{l}){m}){1} = (θ{l +m}){1} = θ{l +m+ 1},

as desired.
In order to prove (ii) we write θ = t/u in lowest terms. Since uθ[l] ≡ t (mod kl),

the number uθ{l} = (t − uθ[l])/kl is an integer for each l. Moreover, we have the
bound ∣∣∣∣t− uθ[l]kl

∣∣∣∣ ≤ |t|+ |u|θ[l]kl < |t|+ |u|.
Therefore, there exist indices m > l such that

θ − θ[m]

km
=
θ − θ[l]
kl

,

which yields θ{m} = θ{l}. The result follows from (i).

We now proceed to give the �nal auxiliary lemma, which complements Lemma
3.23. More precisely, it shows that if we allow the exponents in (3.15) to vary, then
the resulting sequence of last nonzero digits is not regular.

Lemma 3.26. Let f = (f1, . . . , fs) ∈ Pb and assume that for each i = 1, . . . , s the
function fi is of the form

fi(x) = (x− θ)migi(x),

where mi ≥ 1 is an integer, θ ∈ Q∩Zb, and gi ∈ Ppi is such that the values νpi(gi(x)),
`bi(gi(x)) are constant with respect to x ∈ Zpi. If not all mi are equal, then the
sequence (Lb(f(n)))n≥0 is not regular.

Proof. We �rst reduce the problem to showing that if the sequence (Lb(f(n)))n≥0 is
k-regular, then k must be of the form

k = bw1
1 · · · bwss ,

where w1, . . . , ws are positive integers satisfying

m1w1 = . . . = msws.
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Indeed, by Lemma 3.22 the sequence (`b(f(n)))n≥0 is k-automatic. At the same time,
if the sequence (Lb(f(n)))n≥0 were l-regular for some l multiplicatively independent
with k, then (`b(f(n)))n≥0 would simultaneously be l-automatic. But then Cobham's
Theorem would imply that this sequence is eventually periodic, which is ruled out by
Lemma 3.20.

Therefore, it remains to prove that (Lb(f(n)))n≥0 is not k-regular. We begin
with some preparatory steps. By Lemma 3.25 the sequence (θ{l, k})l≥0 is eventually
periodic with period T . Replacing k with kT , we can assume that T = 1. Again, we
suppress k in the notation and from now on write θ[l] = θ[l, k] and θ{l} = θ{l, k} for
all l ≥ 0. Let L ≥ 0 be such that θ{l} = θ{L} for all l ≥ L. It is su�cient to prove
that the subsequence (Lb(f(kLn + θ[L])))n≥0 is not k-regular. Since for i = 1, . . . , s
we have

fi(k
Ln+ θ[L]) = (n− θ{L})mikLmigi(kLn+ θ[L])),

without loss of generality we can assume that L = 0, which means that θ{l} = θ for
all l ≥ 0.

Using this fact, we obtain

fi(k
ln+ θ[l]) = klmi(n− θ)migi(kln+ θ[l]))

for all i = 1, . . . , s, integers l ≥ 0 and n ≥ 0. Let D denote the common value of
miwi. By the assumption that the pi-adic valuation of g(y) is constant, we get

νbi(fi(k
ln+ θ[l])) = lD + νbi(fi(n)),

and thus also
νb(f(kln+ θ[l])) = lD + νb(fi(n)). (3.17)

Renumber the primes so that m1 < m2. By Proposition 1.14, it is enough to
show that the sequence of values lying in the �rst coordinate of Lb(f(n)), that is
(b−νb(f(n))f1(n))n≥0, is not k-regular. For all l ≥ 0 and n ≥ 0 de�ne

βl(n) = b−νb(f(k
ln+θ[l]))f1(k

ln+ θ[l]).

We will prove that the Z-submodule generated by the family {(βl(n))n≥0 : l ≥ 0} is
not �nitely generated.

Suppose that this is not the case and for some t ≥ 0 the sequences (βl(n))n≥0 with
l = 0, 1, . . . , t generate said Z-module. In particular there exist integers α0, α1, . . . , αt
such that for all n ≥ 0 we have

t∑
l=0

αlβl(n) = βt+1(n).

By the de�nition of βl(n) and (3.17) this equality can be written (after some simpli-
�cation) as

t∑
l=0

αlC
lg1(k

ln+ θ[l]) = Ct+1g1(k
t+1n+ θ[t+ 1]), (3.18)

63



where C = km1/bD. In fact, since N is dense in Zp1 , the equality (3.18) also holds
with n replaced by x ∈ Zp1 . Plugging in x = θ and using the fact that θ = θ{l} for
all l ≥ 0, we obtain

t∑
l=0

αlC
lg1(θ) = Ct+1g1(θ).

But g1(θ) 6= 0, so we get
t∑
l=0

αlC
l = Ct+1. (3.19)

However, by the choice of m1 we have νb2(C) = m1w2 − D < m2w2 − D = 0. This
means that (3.19) cannot hold and we arrive at a contradiction.

We now have all the necessary tools to prove Theorems 3.17 and 3.18.

Proof of Theorem 3.17. As in the proof of Theorem 3.5, we focus our attention on
subsequences along arithmetic progressions. For each i = 1, . . . , s let Ti ≥ 0 be the
integer obtained from Proposition 3.10 applied to fi. Take an integer T such that
T ≥ Ti/li for all i = 1, . . . , s. We will consider the subsequences (`b,d(f(bTn+ a)))n≥0
with a = 0, 1, . . . , bT − 1.

For each i = 1, . . . , s and a = 0, 1, . . . , bT − 1 let fia denote the function de�ned
by

fia(x) = fi(b
Tx+ a),

where x ∈ Zpi . Then, analogously as in Proposition 3.10, each function fia satis�es
one of the following conditions:

(i) if there is no root θi ∈ Zpi of fi such that a ≡ θi (mod bTi ), then fia has no root
x ∈ Zpi ;

(ii) if a ≡ θi (mod bTii ) for some root θi ∈ Zpi of fi of multiplicity mi, then

fia(x) = bTmi (x− θia)mi gia(x), (3.20)

where θia = (θi − a)/bT and gia is a function strictly analytic on Zpi such that
νpi(gia(x)), `bi,d(gia(x)) are constant with respect to x ∈ Zpi .

We now proceed to consider each case separately. Case (a) follows by the impli-
cation from (iii) to (i) in Lemma 3.20, applied to each s-tuple (f1a, . . . , fsa).

In the case (b), since b is �xed, we will use the simpli�ed notation θ[T ], θ{T}
instead of θ[T, b], θ{T, b}. If a 6= θ[T ], then a 6≡ θ (mod bTi ) for some i, so the
sequence (`b,d(f(bTn+ a)))n≥0 is periodic (thus also k-automatic).

Otherwise, if a = θ[T ], then for each i = 1, . . . , s of the function fia admits the
form (3.20), where θia = θ{T}. In this case (`b,d(f(bTn + a)))n≥0 is k-automatic due
to Lemma 3.22. It follows that (`b,d(f(n)))n≥0 is k-automatic as well.

At the same time, Lemma 3.20 applied to the function f(bTx + θ[T ]) shows that
the sequence (`b,d(f(bTn+ θ[T ])))n≥0 is not eventually periodic. Hence, by Cobham's
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Theorem (`b,d(f(n)))n≥0 cannot be l-automatic for any l multiplicatively independent
with k.

Finally, in part (c) we can pick an s-tuple of roots θ1, . . . , θs of f1, . . . , fs, respec-
tively, such that not all θi are equal. Let a ∈ {0, 1, . . . , bT − 1} be such that a ≡ θi
(mod bTi ) for all i = 1, . . . , s. Since θ1a, . . . , θsa are not all equal either, Lemma 3.24
applied to the s-tuple (f1a, . . . , fsa) implies that (`b(f(bTn+a))n≥0 is not k-automatic
for any k ≥ 2. Consequently, (`b,d(f(n)))n≥0 is not automatic.

Proof of Theorem 3.18. Part (a) is Lemma 3.21.
In the remaining two cases let T ≥ 0 be the integer obtained precisely as in the

proof of Theorem 3.17. In part (b) for i = 1, . . . , s we write

fi(x) = (x− θ)mgi(x),

where gi ∈ Qpi [X] has no root in Zpi . Then by the choice of T we have, in particular,

νpi(gi(x+ bTy)) = νpi(gi(x))

for all i = 1, . . . , s and x, y ∈ Zpi . We study the subsequences (Lb(f(bTn + a)))n≥0
for a = 0, 1, . . . , bT − 1. We will again write θ[T ] = θ[T, b] and θ{T} = θ{T, b}.

If a 6= θ[T ], then for some i the polynomial fi(bTx + a) has no root in Zpi , so
(Lb(f(bTn+ a))n≥0 is b-regular as in part (a).

For a = θ[T ] we have

fi(b
Tn+ θ[T ]) = bTm(n− θ{T})mgi(bTn+ θ[T ])

for each i = 1, . . . , s. Letting g = (g1, . . . , gs), we obtain

Lb(f(bTn+ θ[T ])) = Lb
(
bTmg(θ[T ])(n− θ{T})m g(bTn+ θ[T ])

g(θ[T ])

)
= Lb(bTmg(θ[T ])(n− θ{T})m)

g(bTn+ θ[T ])

g(θ[T ])
, (3.21)

where we used the property (ii) of Lemma 2.5.
The �rst factor in (3.21) is b-regular due to Lemma 3.23. At the same time, each

component of the second factor is a polynomial in n, so (g(bTn + θ[T ])/g(θ[T ]))n≥0
is a b-regular sequence by Corollary 1.13 and Proposition 1.14. It follows that
(Lb(f(bTn+ θ[T ]))n≥0, and therefore also (Lb(f(n)))n≥0 is b-regular.

If this sequence were l-regular for some l multiplicatively independent with b,
then (`b(f(n)))n≥0 would be l-automatic, but this is impossible because of Theorem
3.17(b).

Part (c) can be split into two subcases. First, we have the case where we can pick
an s-tuple of roots θ1, . . . , θs of f1, . . . , fs, respectively, such that not all θi are equal.
Then our claim follows in a similar fashion as before from part (c) of Theorem 3.17.

The second case occurs when all fi have a common root θ ∈ Q ∩ Zb and no other
pi-adic integer roots but the multiplicities of θ vary with i. For i = 1, . . . , s write

fi(x) = (x− θ)mihi(x),
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where the polynomials hi ∈ Qpi [X] are irreducible over Zpi and mi ≥ 1 are integers,
not all equal.

It is su�cient to prove that the subsequence (Lb(f(bTn+θ[T ])))n≥0 is not regular.
We have

fi(b
Tx+ θ[T ]) = bTmi(x− θ{T})mihi(bTx+ θ[T ]).

The choice of T ensures that the values νpi(hi(b
Tx + θ[T ])), `bi(hi(b

Tx + θ[T ])) are
constant with respect to x ∈ Zpi . Hence, the function f(bTx + θ[T ]) satis�es the
assumptions of Lemma 3.26, and the result follows.

3.5 Further discussion and examples

In this section we discuss some implications of the results proved in this chapter and
a number of related examples. It will be helpful to recall how squares in Qp \ {0}
look (see [66, pp. 17�18]). Write θ ∈ Qp \ {0} in the form θ = pvσ, where νp(σ) = 0.
In the case p 6= 2 we have that θ is a square if and only if v is even and σ mod p
is a square in the �nite �eld Fp. If p = 2, the latter condition is replaced by σ ≡ 1
(mod 8). This fact can also be derived directly from Hensel's Lemma.

To begin, we investigate whether replacing b with its factors may a�ect regu-
larity of (Lb(f(n)))n≥0 or automaticity of (`b,d(f(n)))n≥0. First, let p be a prime.
By Theorem 3.6 k-regularity of (Lpl(f(n)))n≥0 for f ∈ Qp[X] is equivalent to k-
regularity of (Lp(f(n)))n≥0. However, in the following two examples we demonstrate
that automaticity of (`pl,d(f(n)))n≥0 neither implies, nor is implied by automaticity
of (`p,ld(f(n)))n≥0.

Example 3.1. Let p = 5, l = 2, d = 1, and f(x) = 5(x2+1)4. By the above discussion
−1 is a square in Z5, so there exists a root θ ∈ Z5 of f . By Theorem 3.5 the sequence
(`5,2(f(n)))n≥0 is not automatic. However, the same result shows that (`52(f(n)))n≥0
is periodic, and thus k-automatic for every k ≥ 2. In fact, it is easy to check that
`52(f(n)) = 5 for all n ≥ 0.

Example 3.2. Let p = 2, l = 3, d = 1, and g(x) = (x2 + 15)2. Again, g has a root in
Z2. The sequence (`2,3(g(n)))n≥0 is constant with all terms equal to 1. At the same
time, according to Theorem 3.5, (`23(g(n)))n≥0 is not automatic, as the exponent
m = 2 does not divide l = 3.

Examples of such type can also be produced for other primes p and in the case
where f is a power series with in�nitely many nonzero coe�cients.

We now consider a similar problem for a base b ≥ 2 having s ≥ 2 distinct prime
factors. As before, write

b = pl11 · · · plss
and let bi = plii for i = 1, . . . , s. Theorems 3.6 and 3.18 together show that for
f = (f1, . . . , fs) ∈ Pb regularity of (Lb(f(n)))n≥0 implies regularity of (Lbi(fi(n)))n≥0
for at least one i ∈ {1, . . . , s}. The following example demonstrates that this assertion
cannot be strengthened.
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Example 3.3. Let b = 10 and consider the polynomial f(x) = x2 + 1. Then f has
a root in Z5, but no root in Z2. Hence, (L10(f(n)))n≥0 is k-regular for every k ≥ 2.
However, out of the two sequences (L2(f(n)))n≥0 and (L5(f(n)))n≥0, only the former
is regular.

It turns out that the converse also fails, even under the assumption that the
sequences (Lbi(fi(n)))n≥0 are regular for all i = 1, . . . , s.

Example 3.4. Let g(x) = x(x+ 1). Then (Lpl(g(n)))n≥0 is p-regular for every prime
p and exponent l ≥ 1, but by Theorem 3.18 (Lb(g(n)))n≥0 is not regular whenever
b ≥ 2 has two or more prime factors.

A similar argument also works for the function `b,d. In particular, the reasoning
in Examples 3.3 and 3.4 remains valid after replacing each Lb with `b for all the
considered bases.

It is also interesting to consider the relation between k-regularity of (Lb(f(n)))n≥0
and k-automaticity of (`b,d(f(n)))n≥0. Since a k-regular sequence of b-adic integers
becomes k-automatic when reduced modulo bd (by Proposition 1.15), the former prop-
erty implies the latter. The converse implication is not true in general, as demon-
strated by the following examples.

Example 3.5. Let p = 5 and f(x) = (x2 +1)4. Then f has an irrational root θ ∈ Z5,
but `5(f(n)) = 1 for all n ≥ 0 due to the multiplicity, However, Theorem 3.6 shows
that (L5(f(n)))n≥0 is not regular.

When the base is a prime power, in order to ensure that (Lpl(f(n)))n≥0 is a regular
sequence, we thus need to assume that the sequence (`pl,d(f(n)))n≥0 is automatic for
all d ≥ 1. By Theorem 3.5 this rules out the possibility that f has an irrational root,
which means that case (a) or (b) of Theorem 3.6 occurs. The next example shows
that in the case when b has several prime factors, such a strong assumption does not
guarantee regularity of (Lb(f(n)))n≥0.

Example 3.6. Let b = 6 and let f(x) = (x, x2) for x ∈ Q ∩ Z6, where the �rst
component is considered 2-adically and the second one � 3-adically. Theorem 3.17
asserts that the sequence (`6,d(f(n)))n≥0 is 12-automatic regardless of d. On the other
hand, by Theorem 3.18 the sequence (L6(f(n)))n≥0 is not regular due to di�erent
exponents in the components of f(x).

In the following two examples we showcase the computation of the last nonzero
digits of linear recurrence sequences of integers.

Example 3.7. Consider the Fibonacci sequence (Fn)n≥0, given by F0 = 0, F1 = 1,
and Fn+2 = Fn+1 +Fn for n = 0, 1, . . .. We are going to derive an explicit formula for
the last decimal digit of Fn in an elementary way.

It is convenient to compute `10 evaluated at the subsequences (F30n+i)n≥0 for
i = 0, 1, . . . , 29. For any i 6= 0 it can be easily checked, by examining the Fibonacci
sequence modulo 100, that (`10(F30n+i))n≥0 is periodic and 10 is a common period of
all such subsequences.

67



In the case i = 0, we will use equality (i) of Lemma 2.6, which for b = 10 and x
rational takes the form

`10(x) ≡ 2ν2(x)−ν10(x) · 5 + 5ν5(x)−ν10(x) · 6 · 3ν10(x)`5(x) (mod 10). (3.22)

In order to apply this formula, we need a characterization of νp(Fn) and `p(Fn) for
p = 2, 5.

The p-adic valuations are given by ν5(Fn) = ν5(n) and

ν2(Fn) =


0 if n ≡ 1, 2 (mod 3),

1 if n ≡ 3 (mod 6),

ν2(n) + 2 if n ≡ 0 (mod 6),

as proved by Lengyel [48].
Now, `2(F0) = 0 and `2(Fn) = 1 for all n ≥ 1. In the case p = 5 we use the Binet

formula

Fn =
αn − βn

α− β
,

where α = (1 +
√

5)/2, β = (1−
√

5)/2 are the roots of the characteristic polynomial
of x2 − x− 1. It follows that

2n−1Fn =

b(n−1)/2c∑
k=0

(
n

2k + 1

)
5k,

for all n ≥ 1. As in [48, Lemma 1], for k 6= 0 we have

ν5

((
n

2k + 1

)
5k
)
> ν5(n),

which in turn implies
`5(Fn) ≡ 3n−1`5(n) (mod 5). (3.23)

We apply the formula (3.22) to x = F30n/40n rather than x = F30n. This is
because ν2(F30n/40n) = ν5(F30n/40n) = 0 so all the exponents in (3.22) vanish.
Using (3.23), we obtain

`10

(
F30n

40n

)
≡ 5 + 6`5

(
30n · 330n−1

40n

)
≡

{
−1 if n ≡ 0 (mod 2),

1 if n ≡ 1 (mod 2)
(mod 10).

We can now recover the value of `10(F30n), writing

`10(F30n) = `10

(
F30n

40n
40n

)
≡ `10

(
F30n

40n

)
`10(4n) (mod 10).
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Taking all into account, we have

`10(Fn) =


`10(Fi) if n ≡ i (mod 300)

for some i 6≡ 0 (mod 30),

10− `10(4n) if n ≡ 0 (mod 60),

`10(4n) if n ≡ 30 (mod 60).

Proposition 2.9 implies that (`10(Fn))n≥0 is 10-automatic.
We remark that the same conclusion can also be established analytically. Follow-

ing the method described in Section 1.2.3, one can verify that each the subsequences
(F60n+m)n≥0 for m = 0, 1, . . . , 59 can be interpolated by a 2-adic and a 5-adic strictly
analytic function. Let (f2,m, f5,m) ∈ A10 denote such a pair of functions. The expres-
sions for ν2(Fn) and ν5(Fn) show that that unless m = 0, at least one of f2,m, f5,m has
no root in Z2,Z5, respectively. If m = 0, then for p = 2, 5 the function fp,0 has exactly
one root in Zp, which is equal to 0 and has multiplicity 1. Hence, 10-automaticity of
(`10(Fn))n≥0 follows by Theorem 3.17.

In the following example we construct a sequence of integers (un)n≥0 such that
(`b(un))n≥0 is k-automatic but b, k are multiplicatively independent. We also give
a formula for the terms of this sequence by employing a more analytical approach
than in the previous example.

Example 3.8. Let b = 15 and de�ne un = (2n − 1)(16n − 4) for n = 0, 1, . . .. The
sequence (un)n≥0 can be intepolated by 3- and 5-adic analytic functions f3 and f5.
More precisely, for p = 3, 5 let

gp(x) = 16x − 4 = expp(x logp 16)− 4

and
fp(x) = (2x− 1)gp(x),

where x ∈ Zp. Then for all n ≥ 0 we have

un = f3(n) = f5(n).

We now investigate the roots of f3 and f5 in Z3 and Z5, respectively. By the well-
known Lifting the Exponent Lemma (usually attributed to Lucas [55] and Carmichael
[14]), we obtain

ν3(g3(n)) = ν3(4
2n−1 − 1) = ν3(2n− 1) + 1.

At the same time ν5(g5(n)) = 0 for all n ≥ 0. Therefore, x = 1/2 is a double root
of f3 and a single root of f5, and these functions have no other p-adic integer roots.
Theorem 3.17 implies that the sequence (`15(un))n≥0 is 75-automatic.

In order to compute its terms, we examine the behavior of `p(fp(n)) for p = 3, 5.
For p = 5 it is immediate that

`5(f5(n)) ≡ 2`5(2n− 1) (mod 5).
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In the case p = 3, letting g3(x) = (2x− 1)h3(x), we obtain

`3(f3(n)) ≡ (`3(2n− 1))2`3(h3(n)) (mod 3).

By Lemma 3.9 we have that (`3(h3(n)))n≥0 is periodic. In order to �nd a period
and, consequently, calculate the terms `3(h3(n)), we need to take a closer look at the
coe�cients of the power series h3.

Write

h3(x) =
∞∑
i=0

cix
i.

Comparing the coe�cients of g3(x) = (2x− 1)h3(x), we obtain c0 = 3 and

ci = 2ci−1 −
logi3 16

i!

for i ≥ 1. Expanding the logarithm, we see that ν3(log3 16) = 1 and ν3(c1) ≥ 2. It
also follows that for i ≥ 2 we have ν3(logi3 16) = i ≥ ν3(i!) + 2. Indeed, this is true
for i = 2, while for i ≥ 3 Legendre's formula yields

ν3(i!) + 2 =
i− s3(i)

2
+ 2 ≤ i+ 3

2
≤ i,

where s3 denotes the ternary sum-of-digits function. Thus, ν3(ci) ≥ 2 for all i ≥ 1.
As a result, we can write

h3(x) = 3 + 9xt(x),

where ν3(t(x)) ≥ 0 for all x ∈ Z3. This means that `3(h3(x)) is in fact constant and
equal to 1. Therefore,

`3(f3(n)) = `3((2n− 1)2).

Finally, we obtain
`15(un) = `15(3(2n− 1)2, 2(2n− 1)), (3.24)

where the �rst component is the 3-adic part and the second � the 5-adic part.
We remark that replacing the value h3(n) by 3 is valid, as ν3(h3(n)) = ν3(3) and
`3(h3(n)) = `3(3).

In the following example, which is a continuation of Example 3.8, we derive a re-
cursive formula which allows us to compute the terms (3.24).

Example 3.9. Let
αn = (3n2, 2n) ∈ Z3 × Z5,

so that `15(un) = `15(α2n−1) for all n ≥ 1 (and `15(u0) = 3). We are going to determine
the values `15(α75n+a) for a = 0, 1, . . . , 74, depending on `15(αn) but not n. This is
essentially the same as constructing a 75-uniform morphism such that the sequence
(`15(αn))n≥0 is its �xed point. We distinguish a few cases, depending on the value of
ν5(a) and ν3(a).
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If ν5(a) = 0, then ν15(α75n+a) = 0, so

`15(α75n+a) ≡ α75n+a ≡ (0, 2a) (mod 15).

Recall that (x3, x5) mod 15 is the integer m from the set {0, 1, . . . , 14} such that
m ≡ xp (mod p) for p = 3, 5.

If ν5(a) = 1 or ν5(a) = 2, ν3(a) = 0, then ν15(α75n+a) = 1 and

`15(α75n+a) ≡
α75n+a

15
≡
(

1

5
(75n+ a)2,

2

3

(
15n+

a

5

))
≡
(

1

5
,
2

3

)(
a2,

a

5

)
≡
(
−a2,−a

5

)
(mod 15).

The only remaining case is a = 0. We have

`15(α75n) ≡ `15

(
152

(
75n2,

2

3
n

))
≡
(

25,
1

3

)
`15(3n

2, 2n) ≡ 7`15(αn) (mod 15).

To sum up, for all n ≥ 0 and a = 0, 1, . . . , 74 we have

`15(α75n+a) ≡


(0, 2a) if ν5(a) = 0,(
−a2,−a

5

)
if ν5(a) = 1

or ν5(a) = 2, ν3(a) = 0,

7`15(αn) if a = 0

(mod 15).
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4. The 2-adic valuation of

generalized Fibonacci sequences

This chapter is mainly based on the paper [69] by the author of the thesis. We
derive a formula for the 2-adic valuation for a family of linear recurrence sequences
(tn(k))n≥0 of order k. As an application, we e�ectively solve a class of Diophantine
equations involving factorials and the terms of these sequences. Moreover, we use the
main result to study last nonzero digits of tn(k) and determine exactly which terms
are represented by certain ternary quadratic forms.

4.1 Introduction

The p-adic valuation of linear recurrence sequences has been studied by several au-
thors. Lengyel [48] was the �rst to completely characterize the p-adic valuation of
the Fibonacci sequence (Fn)n≥0 for all primes p. Medina and Rowland [58] noted
that the sequence (νp(Fn+1))n≥0 is p-regular and computed its rank, i.e., the rank
of the Z-module generated by the p-kernel of this sequence. Sanna [65] generalized
the result of Lengyel to nondegenerate Lucas sequences of the �rst kind (un)n≥0. We
recall that Lucas sequences of the �rst kind are de�ned by u0 = 0, u1 = 1 and for
n ≥ 0 by the recurrence relation un+2 = aun+1 + bun, where a, b are given integers.
More precisely, Sanna proved the following:

Theorem 4.1 (Sanna). If p is a prime number such that p - b, then

νp(un) =



νp(n) + νp(up)− 1 if p | ∆, p | n,
0 if p | ∆, p - n,
νp(n) + νp(upτ(p))− 1 if p - ∆, τ(p) | n, p | n,
νp(upτ(p)) if p - ∆, τ(p) | n, p - n,
0 if p - ∆, τ(p) - n,

for each positive integer n, where ∆ = a2 + 4b and τ(p) = min{n > 0 : p | un}.

Murru and Sanna [60] further generalized the above results and determined for
each integer k ≥ 2 relatively prime to b the k-adic valuation νk(un). In the same
paper they observed that the sequence (νk(un+1))n≥0 is k-regular and computed its
rank in the case when k is a prime not dividing b.
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The theorem by Shu and Yao (Theorem 3.1) can be viewed as a quite general result
on regularity of p-adic valuations of linear recurrence sequences. To see why this result
is relevant to our discussion, consider a linear recurrence sequence (sn)n≥0 of nonzero
integers. By the construction in Section 1.2.3, for almost all primes p we can �nd
an integer π(p) > 0 and functions f0, f1 . . . , fπ(p)−1 strictly analytic on Zp such that
the subsequences (sπ(p)n+i)n≥0 coincide with (fi(n))n≥0 for i = 0, 1, . . . , π(p)− 1. The
result of Shu and Yao together with Theorem 1.9 imply that (νp(sn))n≥0 is p-regular
if and only if none of fi have a root in Zp \ Q. In the same paper, Shu and Yao
applied their result to prove p-regularity of p-adic valuations of a broad class of linear
recurrence sequences of order two (without giving explicit formulas).

Much less is known in the case of linear recurrence sequences of higher order.
Lengyel and Marques [49] studied the �Tribonacci� numbers (tn(3))n≥0, de�ned by
t0(3) = 0, t1(3) = t2(3) = 1, and tn+3(3) = tn+2(3) + tn+1(3) + tn(3) for all n ≥ 0.
They determined the 2-adic valuation of tn(3) and used this result to �nd all the
solutions of the equation tn(3) = m! in nonnegative integers n,m. In a later paper
[50] these authors considered generalized Fibonacci sequences (tn(k))n≥0 of any order
k ≥ 2, de�ned by t0(k) = 0, t1(k) = · · · = tk−1(k) = 1, and for all n ≥ 0 by the
recurrence

tn+k(k) =
k−1∑
i=0

tn+i(k). (4.1)

They completely characterized the 2-adic valuation of the �Tetranacci� sequence
(tn(4))n≥0 and also gave an incomplete formula for the 2-adic valuation of the �Pen-
tanacci� sequence (tn(5))n≥0 (these are special cases of Theorems 4.2 and 4.4 below).

The main aim of this chapter is to derive by an elementary method the following
formula from [69] (with slightly changed notation).

Theorem 4.2. If k ≥ 4 is even, then for all n ≥ 0 we have

ν2(tn(k)) =


0 if n ≡ 1, 2, . . . , k (mod k + 1),

1 if n ≡ k + 1 (mod 2(k + 1)),

ν2(n) + ν2(k − 2) + 1 if n ≡ 0 (mod 2(k + 1)).

It follows that for even k ≥ 4 the sequence (ν2(tn+1(k)))n≥0 is 2-regular.

Remark 4.3. In a recent paper, Young [74] gave a short proof of Theorem 4.2 using
2-adic analytic functions.

We shall extend our argument to provide an alternative proof of a result by Young
[73], which covers the case of odd k ≥ 5 (obtained by 2-adic analytic approach). Its
statement is also given for the terms tn(k) with n negative, de�ned by reversing the
relation (4.1).
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Theorem 4.4 (Young). If k ≥ 5 is odd, then for all integers n we have

ν2(tn(k)) =



0 if n 6≡ 0, k (mod k + 1),

ν2(k − 1) if n ≡ k (mod 2(k + 1)),

ν2(k − 3) if n ≡ 2k + 1 (mod 2(k + 1)),

ν2(n− k − 1) if n ≡ k + 1 (mod 2(k + 1)) and

ν2(n− k − 1) < ν2(k
2 − 1),

ν2(n− 2) + 1 if n ≡ k + 1 (mod 2(k + 1)) and

ν2(n− k − 1) > ν2(k
2 − 1),

ν2(n)− ν2(k + 1) + 1 if n ≡ 0 (mod 2(k + 1)).

Remark 4.5. We note that in the case n ≡ k+1 (mod 2(k+1)) and ν2(n−k−1) >
ν2(k

2 − 1) of Theorem 4.4 it is straightforward to check that ν2(n − 2) = ν2(k − 1),
and therefore one may write the result in a simpler form ν2(tn(k)) = ν2(k− 1) + 1 for
such n.

These two theorems con�rm for all k ≥ 4 a conjecture of Lengyel and Marques
[50, Conjecture 2], which can be equivalently stated as follows:

Conjecture 4.6. If k ≥ 2, then for all n ≡ 0 (mod 2(k + 1)) we have

ν2 (tn(k)) = ν2(n) +

{
2 if k = 2,

ν2(k − 2)− ν2(k + 1) + 1 if k ≥ 3.

In the cases k = 2, 3 this equality was already known to be true as a consequence
of the mentioned results on Fibonacci and Tribonacci sequences.

The formula in Theorem 4.4 is incomplete since it does not cover the case n ≡ k+1
(mod 2(k + 1)) and ν2(n − k − 1) = ν2(k

2 − 1). Young gave a somewhat explicit
characterization in this case by showing that for each odd k ≥ 5 there exists z(k) ∈ Z2

such that ν(tn(k)) = ν2(m− z(k)) + 2 for all n of the form n = 2(k+ 1)m+ k+ 1. In
particular, this means that the 2-adic analytic function interpolating the subsequence
(t(2k+2)m+k+1(k))m≥0 has z(k) as the only root in Z2 and this root is of multiplicity
one. However, Young's results do not settle whether or not this root is rational,
and therefore whether or not (ν2(tn(k)))n≥0 is 2-regular. While we cannot provide
a convincing argument for either possiblity, it seems likely that this sequence is not
regular at all.

4.2 The 2-adic valuation of tn(k)

In this section we assume that k ≥ 2 is �xed. To simplify the notation we will thus
write tn (not to be confused with the Thue�Morse sequence considered in Chapter
1) instead of tn(k). We start our investigation of ν2(tn) by summarizing some basic
properties of the sequence (tn)n≥0.

74



It is periodic modulo 2 with period k + 1, which follows from the relation

tn+k+1 = 2tn+k − tn.

It is easy to check that if k is even, then ν2(tn) > 0 precisely when n is of the form
n = (k + 1)m with m ≥ 0 an integer. Similarly, if k is odd, then ν2(tn) > 0 if and
only if n = (k + 1)m or n = (k + 1)m + k. The companion matrix of the recurrence
(4.1) de�ning (tn)n≥0 has the form

C =



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
1 1 1 · · · 1


.

We also introduce for n ≥ 0 the notation:

Tn =


tn
tn+1

...
tn+k−1

 , Un =


tn tn+1 . . . tn+k−1
tn+1 tn+2 . . . tn+k
...

...
...

tn+k−1 tn+k . . . tn+2k−2

 .
Clearly, CTn = Tn+1 and CUn = Un+1, thus for any nonnegative integers m,n there
holds

CmTn = Tm+n, (4.2)

CmUn = Um+n. (4.3)

The derivation of the formulas for ν2(tn) given in Theorem 4.2 and Theorem 4.4
is essentially split into two main parts. The �rst part culminates in Proposition 4.11
below, which provides an explicit expression for tn modulo 2k+1 or 2k for indices n
such that potentially ν2(tn) > 0 (it depends on the parity of k whether this inequality
holds). This in turn is enough to determine ν2(tn) when this valuation is at most
k or k − 1. The second part is focused on calculating greater valuations. To this
end, in Proposition 4.14 below we establish a result which resembles the Lifting the
Exponent Lemma with a geometric sequence replaced by (tn)n≥0.

To begin, we provide the form of the matrix Ck+1, which allows to conveniently
compute the vector Tn+k+1, given Tn.

Lemma 4.7. We have

Ck+1 = 2


1 1 . . . 1
2 2 . . . 2
...

...
...

2k−2 2k−2 . . . 2k−2

2k−1 2k−1 . . . 2k−1

−


1 0 . . . 0 0

2 1
. . . 0

...
...

. . .
. . .

...
2k−2 2k−3 . . . 1 0
2k−1 2k−2 . . . 2 1

 . (4.4)
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Proof. Induction on i ≥ 0 together with the identity tn+k+1 = 2tn+k − tn give

tk+1+i = 2i+1tk −
i∑

j=0

2i−jtj = 2i+1

k−1∑
j=0

tj −
i∑

j=0

2i−jtj.

Let D denote the matrix on the right-hand side of (4.4). Putting i = 0, 1, . . . , k−1 in
the above identity and using (4.2) we obtain Tk+1 = DT0 = Ck+1T0, so (Ck+1−D)T0 =
0. Observe that the same holds for every sequence satisfying the recurrence relation
(4.1), regardless of the initial terms. Hence, Ck+1 = D, as claimed.

As an important corollary, we obtain information about periods modulo powers
of 2 of (tn)n≥0 and other sequences de�ned by the same recurrence relation.

Corollary 4.8. Let (sn)n≥0 be a sequence of integers satisfying for all n ≥ 0 the
recurrence relation

sn+k =
k−1∑
i=0

sn+i. (4.5)

Then for all integers l ≥ 0 the sequence (sn)n≥0 is periodic modulo 2l+1 with (not
necessarily minimal) period 2l(k + 1).

Proof. Let D = Ck+1 and let I denote the k × k identity matrix. By Lemma 4.7 all
the entries of D−I are even and an easy induction on l ≥ 0 shows that all the entries
of D2l − I are divisible by 2l+1.

Let Sn = [sn, . . . , sn+k−1]
T for all n ≥ 0. Since C is the companion matrix of the

relation (4.5), we obtain

S2l(k+1) − S0 = (D2l − I)S0,

which proves our claim.

As we will see, calculating Tm(k+1) through repeated multplication by Ck+1 yields
sums involving binomial coe�cients and powers of 2. We recall two standard identities
useful in dealing with these expressions.

Lemma 4.9. For all integers l, r ≥ 0 we have

(i)
r∑
i=0

(
l+i
l

)
=
(
l+r+1
l+1

)
;

(ii)
r∑
i=0

(
l+i
l

)
2i = (−1)l+1 + 2r+1

l∑
j=0

(
l+r+1
l−j

)
(−2)j.

Proof. For any �xed l ≥ 0 the identity (i) follows from induction on r.
In order to prove (ii) we evaluate in two ways the lth derivative of the function

f(x) =
1

l!

r∑
i=0

xl+i =
1

l!

xl+r+1 − xl

x− 1
,
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at x = 2. The left-hand side of (ii) is equal to f (l)(2) calculated for f written in the
sum form. The other expression for f gives

f (l)(x) =
1

l!

l∑
j=0

(
l

j

)(
1

x− 1

)(j) (
xl+r+1 − xl

)(l−j)
=

l∑
j=0

(−x)j

(x− 1)j+1

[(
l + r + 1

l − j

)
xr+1 −

(
l

j

)]

= xr+1

l∑
j=0

(
l + r + 1

l − j

)
(−x)j

(x− 1)j+1
+

(
−1

x− 1

)l+1

.

Substituting x = 2, we get the desired result.

In the following lemma we directly calculate the values of Tm(k+1) modulo 2k+1,
as well as tm(k+1)+k modulo 2k.

Lemma 4.10. For l ≥ 0 de�ne the following column vectors in Nk:

w = [1, . . . , 1]T ,

vl =

[(
l

l

)
, 2

(
l + 1

l

)
, . . . , 2k−1

(
l + k − 1

l

)]T
.

Then for any integer m ≥ 1 we have

Tm(k+1) ≡ w + (−1)m−1

(
2(k − 2)

m−1∑
l=0

vl + vm−1

)
(mod 2k+1), (4.6)

tm(k+1)+k ≡ k − 1 + (−1)m · 2(k − 2)δm (mod 2k), (4.7)

where δm = m mod 2.

Proof. First, we use Lemma 4.7 to calculate how multiplication by Ck+1 acts on the
vectors w and vl. It is readily checked that

Ck+1w = 2kv0 − (2v0 − w) = w + 2(k − 1)v0, (4.8)

while Lemma 4.9 applied to each coordinate yields

Ck+1vl ≡ 2 · (−1)l+1v0 − vl+1 (mod 2k+1). (4.9)

In order to prove (4.6) we will now use induction onm. Writing T0 = w−[1, 0, · · · , 0]T ,
we obtain

Tk+1 = Ck+1T0 = w + 2(k − 1)v0 − v0 = w + 2(k − 2)v0 + v0,

so the base case m = 1 holds.
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Now let m ≥ 2 and assume (4.6) is true for m− 1, which implies

Tm(k+1) ≡ Ck+1

[
w + (−1)m−2

(
2(k − 2)

m−2∑
l=0

vl + vm−2

)]
.

If m is even, then by (4.8) and (4.9) we get

Tm(k+1) ≡ w + 2(k − 1)v0 + 2(k − 2)
m−2∑
l=0

(
2 · (−1)l+1v0 − vl+1

)
− 2v0 − vm−1

≡ w + (2(k − 1)− 4(k − 2)− 2)v0 − 2(k − 2)
m−1∑
l=1

vl − vm−1

≡ w + (−1)m−1

(
2(k − 2)

m−1∑
l=0

vl + vm−1

)
(mod 2k+1).

A similar computation gives the desired form of Tm(k+1) modulo 2k+1 for m odd.
The congruence (4.7) follows from the fact that tm(k+1)+k is the sum of the entries

of Tm(k+1). Indeed, by Lemma 4.9(ii), the sum of the entries of each vl is congruent
to (−1)l+1 modulo 2k. Therefore,

tm(k+1)+k ≡ k − 1 + (−1)m−1

(
·2(k − 2)

m−1∑
l=0

(−1)l+1 + (−1)m

)
≡ k − 1 + (−1)m · 2(k − 2)δm (mod 2k).

Keeping in mind that tm(k+1) is the �rst entry of Tm(k+1), we can easily deduce the
following proposition.

Proposition 4.11. For all integers m ≥ 0 we have the following congruence relations:

tm(k+1) ≡

{
−2(k − 2)m if m is even,

2((k − 2)m+ 1) if m is odd,
(mod 2k+1)

and

tm(k+1)+k ≡

{
k − 1 if m is even,

−k + 3 if m is odd.
(mod 2k).

We note that the same result could be obtained direcly by induction, as in the
paper of Young [73, Proposition 1]. However, our approach gives congruences for the
other entries of Tm(k+1) modulo a higher power of 2. As already mentioned, Propo-
sition 4.11 allows to easily compute the values ν2(tm(k+1)) ≤ k and also ν2(tm(k+1)+k)
in the case k 6= 3.

We now proceed to the second part of the reasoning, which deals with the case
where ν2(tm(k+1)) is greater than k. First, we give a technical lemma concerning the
matrix U0.
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Lemma 4.12. The matrix U0 is invertible and

ν2(detU0) =

{
0 if k is even,

ν2(k − 1)− 1 if k is odd.

Proof. If k is even, then tn is even if and only if k + 1 | n. Consequently,

U0 ≡



0 1 1 . . . 1
1 1 . . . 1

1
... . .

.
0

... . .
.

. .
.

1

. .
.
. .
.

. .
. ...

1 1 0 1 · · · 1


(mod 2),

where the latter matrix contains zeros exactly at positions (1, 1) and (i, j) ∈ {1, . . . , k}2
such that i+ j = k + 3. Subtracting the second column from all the others allows us
to quickly compute that detU0 ≡ 1 (mod 2).

The case of k odd is slightly harder. By considering the 2k − 1 initial terms tn
modulo k − 1, we obtain

U0 ≡



0 1 1 1 1 · · · 1

1 1 1 1 . .
.

0

1 1 1 . .
.

0

1 1 . .
.

−1

1 . .
.

−3
... . .

.
. .
.
. .
.

. .
.

. .
. ...

1 0 0 −1 −3 · · · 1− 2k−3


(mod (k − 1)), (4.10)

where the entry at position (i, j) of the matrix on the right is equal to 1 − 2i+j−k−3

when i+ j ≥ k + 3. Let U denote this matrix. In order to compute the determinant
of U we again perform elementary operations on the columns of U . First, we subtract
the �rst column from all the others. Then, for each j = k, k − 1, ..., 3 (in this order),
we subtract the sum of the second to (j − 1)-st columns from the j-th column. After
these operations we get the matrix

0 1 0 −1 · · · −k + 4 −k + 3
1 −1
1 −1
... . .

.

... . .
.

1 −1
1 −1


, (4.11)
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where the blank entries are all zeros. By adding all the other columns in (4.11) to
the �rst one, we compute that

det(U) = ±

(
−1 +

k−3∑
j=1

j

)
= ±(k − 1)(k − 4)

2
.

From this and (4.10) we conclude that ν2(detU0) = ν2(k − 1)− 1.

The following lemma shows how the term tn+m can be expressed using terms with
indices close to n and m.

Lemma 4.13. For all integers m,n ≥ 0 we have

tm+n = T TmU
−1
0 Tn.

Proof. Identities (4.2) and (4.3) yield

Tm+n = CmTn = UmU
−1
0 Tn,

and the �rst entry gives the desired formula.

As the �nal step before proving Theorem 4.2 and Theorem 4.4, we apply the last
two lemmas to show that certain congruences modulo a �xed power of 2 involving
the vectors Tn can be �lifted� to congruences modulo arbitrarily large powers of 2. In
e�ect, this will enable us to determine large values of ν2(tn).

Proposition 4.14. Let l0, l1 be �xed integers such that l1 ≥ 0 and l0 ≥ l1+ν2(k−1)+1.
If a column vector A0 ∈ Zk satis�es the congruence

T2l0 (k+1) ≡ 2l0+1A0 + T0 (mod 2l0+l1+2), (4.12)

then for any l ≥ l0 and s ≥ 1 we also have

Ts2l(k+1) ≡ s2l+1A0 + T0 (mod 2l+l1+2). (4.13)

Proof. We use induction on s and l. First, let s = 1 and assume that the congruence
(4.13) holds for some l ≥ l0 with A0 = [a0, a1, . . . , ak−1]

T ∈ Zk. We can write

T2l(k+1) = 2l+l1+2B0 + 2l+1A0 + T0,

where B0 = [b0, b1, . . . , bk−1]
T ∈ Zk. Let (an)n≥0 and (bn)n≥0 be de�ned by the same

recurrence relation as (tn)n≥0, namely

an+k =
k−1∑
i=0

an+i, bn+k =
k−1∑
i=0

bn+i,

for all n ≥ 0. De�ne An = [an, . . . , an+k−1]
T and Bn = [bn, . . . , bn+k−1]

T . Then for all
n ≥ 0 we have

T2l(k+1)+n = 2l+l1+2Bn + 2l+1An + Tn. (4.14)
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To simplify the notation, for i = 0, 1, ..., k − 1 let Ei ∈ Zk denote the vector with 1
on the i-th position (counting from 0) and 0 on the others. Clearly, Ti = U0Ei for
i = 0, 1, ..., k − 1.

We will now consider the elements of the vector T2l+1(k+1). Fix some i such that
0 ≤ i ≤ k − 1. Using Lemma 4.13 and the equality (4.14), we obtain

t2l+1(k+1)+i = T T2l(k+1)U
−1
0 T2l(k+1)+i

= (2l+l1+2B0 + 2l+1A0 + T0)
TU−10 (2l+l1+2Bi + 2l+1Ai + Ti)

= 22l+2c+ 2l+1
(
(2l1+1B0 + A0)

TU−10 Ti + T T0 U
−1
0 (2l1+1Bi + Ai)

)
+ T T0 U

−1
0 Ti

= 22l+2c+ 2l+1
(
(2l1+1B0 + A0)

TEi + ET
0 (2l1+1Bi + Ai)

)
+ T T0 Ei

= 22l+2c+ 2l+l1+3bi + 2l+2ai + ti,

where c = (2l1+1B0 + A0)
TU−10 (2l1+1Bi + Ai) is a rational number. By Lemma 4.12,

regardless of parity of k, we have ν2(det(U0)) ≤ ν2(k − 1). This implies that

ν2(2
2l+2c) ≥ 2l + 2− ν2(det(U0)) ≥ l + l0 + 2− ν2(k − 1) ≥ l + l1 + 3,

and hence (4.13) holds for l + 1.
Now assume that (4.13) is satis�ed for some s ≥ 1 and all l ≥ l0. For any l ≥ l0

we obtain

T(s+1)2l(k+1) ≡ 2l+1As2l(k+1) + Ts2l(k+1)

≡ 2l+1As2l(k+1) + s2l+1A0 + T0 (mod 2l+l1+2).

But Corollary 4.8 shows that 2l(k + 1) is a period of the sequence (an)n≥0 modulo
2l+1 (and also modulo 2l1+1, as l ≥ l0 > l1), so

2l+1As2l(k+1) ≡ 2l+1A0 (mod 2l+l1+2)

and the result follows.

We are now ready to prove the formulas for ν2(tn).

Proof of Theorem 4.2. Let k ≥ 4 be even. If n ≡ 1, . . . , k (mod k+1) then obviously
ν2(tn) = 0.

If n ≡ k + 1 (mod 2(k + 1)), then Proposition 4.11 immediately implies that
ν2(tn) = 1.

In the remaining case n ≡ 0 (mod 2(k + 1)), we can write n = s2l(k + 1) with
s ≥ 1 odd and l ≥ 1. Proposition 4.11 gives

tn ≡ −s2l+1(k − 2) (mod 2k+1). (4.15)

When l ≤ ν2(k − 2) + 1 this allows us to conclude that

ν2(tn) = l + 1 + ν2(k − 2) = ν2(n) + ν2(k − 2) + 1.
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To see this, we need to prove the inequality 2ν2(k − 2) + 2 ≤ k for all even k ≥ 4.
Direct calculation shows that this is an equality for k = 4, 6. For k ≥ 8 it follows from
the fact that ν2(k−2) ≤ log(k−2)/ log 2 and the function f(x) = x−2 log(x−2)/ log 2
is increasing if x ≥ 5.

When l > ν2(k − 2) + 1, the congruence (4.15) may not be su�cient to compute
ν2(tn). Instead, we apply Proposition 4.14 with l0 = ν2(k− 2) + 1 and l1 = ν2(k− 2).
Observe that by Corollary 4.8 there exists some A0 ∈ Zk such that the assumption
(4.12) of Proposition 4.14 holds. As we have already seen, l0 + l1 + 2 ≤ k + 1, so
(4.15) with s = 1, l = l0 implies

t2l0 (k+1) ≡ −2l0+1(k − 2) (mod 2l0+l1+2).

Hence, we can set a0 = −(k − 2) as the �rst entry of the vector A0. By Proposition
4.14 for l ≥ l0 we get

ts2l(k+1) ≡ −s2l+1(k − 2) (mod 2l+l1+2).

This again leads to the equality ν2(tn) = ν2(n) + ν2(k − 2) + 1.

The proof of Theorem 4.4 is very similar, so we omit some of the details.

Proof of Theorem 4.4. Let k ≥ 5 be odd. We have C2(k+1) ≡ I (mod 4), where
I is the k × k identity matrix. Hence, each of the sequences (t2(k+1)m+i)m≥0 for
i = 0, 1, . . . , 2k+1 can be interpolated by a 2-adic analytic function. Since N is dense
in Zp and | · |p is a p-adically continuous function, it is su�cient to prove the result
for n ≥ 0.

If n ≡ 1, . . . , k−1 (mod k+1), then ν2(tn) = 0. Proposition 4.11 gives the desired
formula for ν2(tn) when n ≡ k (mod (k + 1)).

The case n ≡ 0 (mod 2(k + 1)) is handled similarly as in the previous proof. In
order to apply Proposition 4.14, it su�ces to put l0 = ν2(k − 1) + 1, l1 = 0, and
a0 = −(k − 2). As a result, for n = s2l(k + 1) with s odd and l ≥ 1 we obtain

ν2(tn) = l + 1 = ν2(n)− ν2(k + 1) + 1.

In the case n ≡ k + 1 (mod 2(k + 1)) write n = (s2l + 1)(k + 1) with s ≥ 1 odd
and l ≥ 1. It follows from Proposition 4.11 that

tn ≡ 2((k − 2)(s2l + 1) + 1) ≡ 2((k − 1)(s2l + 1)− s2l) (mod 2k+1).

Assume that ν2(n − k − 1) < ν2(k
2 − 1), which is equivalent to l < ν2(k − 1) and

implies ν2(k + 1) = 1. We have

ν2(tn) = l + 1 = ν2(n− k − 1)− ν2(k + 1) + 1 = ν2(n− k − 1).

On the other hand, if ν2(n− k − 1) > ν2(k
2 − 1), then l > ν2(k − 1), and hence

ν2(tn) = ν2(k − 1) + 1,

which ends the proof by Remark 4.5.
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Remark 4.15. It is interesting to see why the treatment of the case n ≡ k + 1
(mod 2(k + 1)) using Proposition 4.14 does not yield satisfactory results for k ≥ 5
odd. By applying the recurrence relation (4.1) to (4.12), and (4.13), we �nd that
Proposition 4.14 holds when the indices of all vectors are shifted by k + 1. This
observation and Proposition 4.11 lead to the congruence

t(2ls+1)(k+1) ≡ s2l+1(k − 2) + 2(k − 1) (mod 2l0+2), (4.16)

valid for all integers l ≥ l0 = ν2(k − 1) + 1 and s ≥ 1. However, in the �critical�
case l = ν2(k − 1) the expression s2l+1(k − 2) + 2(k − 1) has unbounded 2-adic
valuation as s ranges over odd positive integers, and thus it is not possible to determine
ν2(t(2ls+1)(k+1)) in one go. This problem did not occur for indices n satisfying n ≡ 0
(mod 2(k+1)), as the congruence relation of the form (4.16) involved the term t0 = 0
instead of tk+1 = 2(k − 1).

4.3 Applications

In this section we will show how the formula for ν2(tn) can be applied to e�ectively
solve two families of Diophantine equations.

The �rst type of equations we are going to consider involves the terms tn and
factorials. So far, this type of problems has been mainly studied for binary recurrence
sequences. Luca [52] proved that every nondegenerate binary recurrence sequence
contains only �nitely many terms expressible as a product of factorials and that the
solutions can be e�ectively computed. He also determined that the only Fibonacci
numbers being products of factorials are F1, F2, F3, F6, F12. Luca and St nic  [54]
generalized the latter result and showed that F1F2F3F4F5F6F8F10F12 = 11! is the
largest product of Fibonacci numbers with distinct indices which is also a product
of factorials. The largest Fibonacci number at most one away from a product of
factorials was shown to be F7 = 2!3! + 1 by Marques [56].

An additive analogue of these equations was investigated by Grossman and Luca
[39], who proved that in a nondegenerate binary recurrence sequence (sn)n≥0 there
exist only �nitely many terms expressible as a Z-linear combination of a given number
of factorials with coe�cients bounded by a �xed constant. Again, all the solutions
can be e�ectively computed. In the same paper the authors also found that the
largest Fibonacci and Lucas numbers being a sum or di�erence of two factorials are
F12 = 5!+4! and L6 = 4!−3!. The question of expressing Fibonacci numbers as a sum
of three factorials was solved Bollman, Hernández and Luca [12], who found that
F7 = 1! + 3! + 3! is the largest such number. Luca and Siksek [53] studied a related
problem of �nding all factorials expressible as a sum of at most three Fibonacci
numbers and determined the largest solution to be 6! = F15+F10+F10 = F15+F11+F8.

Many of these works use the famous Primitive Divisor Theorem due to Carmichael
[15] or its more general form due to Bilu, Hanrot, and Voutier [10]. Unfortunately,
such a result is not known for linear recurrence sequences of order 3 or higher, and thus
other methods need to be employed in order to solve Diophantine equations involving
the terms of these sequences and factorials. It turns out that computing p-adic
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valuation of such a sequence is sometimes su�cient, as shown by Lengyel and Marques
[49]. They used the formula for the 2-adic valuation of tn(3) to �nd all the factorials
among the Tribonacci numbers, the largest being t7(3) = 4!. A characterization of
ν2(tn(3) + 1) and ν2(tn(3) − 1) was also used by Facó and Marques [35] as a means
to prove that the Brocard�Ramanujan equation n! + 1 = m2 has no solutions with m
a Tribonacci number.

We shall use the approach demonstrated in [49, 35] in order to completely solve
the equation

m! =
d∏
i=1

tni (4.17)

in positive integers m,n1, . . . , nd, where k ≥ 4 even and d ≥ 1 are �xed. In essence,
the method used relies on comparing both sides of (4.17) in terms of magnitude and 2-
adic valuation. Legendre's formula (Theorem 1.26) and Theorem 4.2 give ν2(m!) and
ν2(tn), respectively. Factorials may be estimated by an inequality form of Stirling's
formula √

2πmm+ 1
2 e

1
12m+1

−m < m! <
√

2πmm+ 1
2 e

1
12m
−m,

valid for allm ≥ 0, which was proved by Robbins [62]. Following Lengyel and Marques
[49], in order to simplify the calculations we use a less precise upper bound.

Lemma 4.16. For all m ≥ 6 we have

m! <
(m

2

)m
.

Proof. The inequality is easily veri�ed form = 6 and form ≥ 7 it follows by induction.

By a lemma of Wolfram [72, Lemma 3.6] the characteristic polynomial xk−xk−1−
· · · − x − 1 has exactly one real root φ lying in the interval (1, 2) (more precisely,
φ ∈ (2(1 − 2−k), 2)). This allows us to bound tn from below, as in the following
lemma.

Lemma 4.17. For all n ≥ 1 we have

tn ≥ φn−k−1.

Proof. For n = 1, ..., k − 1 we have tn = 1 ≥ φn−k−1 and also tk = k − 1 ≥ 2 > φ.
Then we proceed by induction on k.

Having all the necessary estimates, we are ready to prove the following result.

Theorem 4.18. Fix d ≥ 1 and k ≥ 4 even. Equation (4.17) has only �nitely many
solutions in positive integers m,n1, . . . , nd. Moreover, the solutions can be bounded
by an e�ectively computable constant depending only on d and k.
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Proof. Assume that equation (4.17) is satis�ed. The sum s2(m) of binary digits of
m does not exceed logm/ log 2 + 1, thus by Legendre's formula and Theorem 4.2, we
obtain

m− logm

log 2
− 1 ≤ ν2(m!) =

d∑
i=1

ν2(tni) ≤
d∑
i=1

(ν2(ni) + ν2(k − 2) + 1)

= d(ν2(k − 2) + 1) + ν2

(
d∏
i=1

ni

)

≤ d(ν2(k − 2) + 1) +
log
(∏d

i=1 ni

)
log 2

. (4.18)

At the same time, Lemmas 4.17 and 4.16 imply that for m ≥ 6 we have(
d∑
i=1

ni − d(k − 1)

)
log φ ≤

d∑
i=1

log(tni) = log(m!) < m log
m

2
, (4.19)

where φ ∈ (1, 2) is a root of xk − xk−1− · · · − x− 1. Combining (4.18) and (4.19) via
the inequality between the arithmetic and geometric mean of n1, . . . , nd, yields

m− logm

log 2
− 1− d(ν2(k − 2) + 1)− 1

log 2
log

(
m

log φ
log

m

2
+ d(k − 1)

)
< 0. (4.20)

The left side of (4.20) tends to in�nity as m → ∞, and thus there are only �nitely
many m satisfying this inequality. Furthermore, the bound on m can be e�ectively
computed and depends only on d and k.

Numerical calculations based on inequality (4.20) show that the only nontrivial
solution of equation (4.17) with k even such that 4 ≤ k ≤ 10 and 1 ≤ d ≤ 10 is
t5(4) = 3!.

Remark 4.19. It seems plausible that t5(4) = 3! is in fact the only nontrivial solution
even if we let either d or k (or both) be unbounded. However, in this case the method
used in Theorem 4.18 seems insu�cient. Indeed, let m(d, k) be the largest positive
integer such that the inequality (4.20) holds for all m ≤ m(d, k). It is straightforward
to check that m(d, k) is arbitrarily large if d or k is arbitrarily large.

Theorem 4.18 can be generalized to a broader class of integer sequences.

Theorem 4.20. Let (sn)n≥0 be a sequence of positive integers such that

log sn = Ω(n). (4.21)

Assume that for a prime p and some constant C < 1 we have

νp(sn) = O
(
nC
)
. (4.22)

85



Then for each �xed integer d ≥ 1 the equation

m! =
d∏
i=1

sni (4.23)

has only a �nite number of solutions in nonnegative integers m,n1, n2, . . . , nd. More-
over, the solutions can be bounded by an e�ectively computable constant depending
only on d, p, and the implied constants in (4.21) and (4.22).

Proof. By the assumptions, there exist constants K1, K2 > 0 and an integer n0 ≥ 0
such that ν2(sn) ≤ K1n

C and log sn ≥ K2n for n ≥ n0.
Assume that the equation (4.23) is satis�ed for some m,n1, n2, . . . , nd. Without

loss of generality we may assume that ni ≥ n0 for i = 1, 2, . . . , d. Indeed, suppose
that ni < n0 for i = j + 1, j + 2, . . . , d for some j < d (up to renumbering the ni).
Then m,n1, . . . , nj is a solution to the equation m! = S

∏j
i=1 sni with S =

∏d
i=j+1 sni

a constant and the argument provided below can be easily extended to this modi�ed
equation.

The reasoning is similar as in the proof of Theorem 4.18. Legendre's formula
implies

m− logm
log p
− 1

p− 1
≤ νp(m!) =

d∑
i=1

ν2(sni) ≤ dK1

(
max
1≤i≤d

ni

)C
. (4.24)

On the other hand, for m ≥ 6 we have by Lemma 4.16

K2 max
1≤i≤d

ni ≤
d∑
i=1

log(sni) = log(m!) < m log
m

2
. (4.25)

Inequalities (4.24) and (4.25) together give

m− logm

log p
− 1− dK1(p− 1)

(
m

K2

log
m

2

)C
< 0.

Since C < 1, the left side of the above inequality treated as a function of m tends
to in�nity as m → ∞. Moreover, we can e�ectively compute a bound on m, which
depends only on d, p,K1, K2.

The sequences (tn(k))n≥0 with k ≥ 4 even satisfy the conditions (4.21) (by Lemma
4.17) and (4.22) with p = 2 and any C ∈ (0, 1) (by Theorem 4.2). Hence, Theorem
4.20 implies Theorem 4.18, though the latter usually gives a better bound on the
solutions. More generally, we have the following consequence of Theorem 4.20.

Corollary 4.21. Let (sn)n≥0 be a nondegenerate linear recurrence sequence of integers
satisfying

sn+k =
k−1∑
i=0

aisn+i,
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where a0 6= 0, and let p be a prime not dividing a0. Assume that the minimal poly-
nomial of (sn)n≥0 has a root of norm greater than 1. If (νp(sn))n≥0 is p-regular,
then the equation (4.23) has only �nitely many solutions in nonnegative integers
m,n1, n2, . . . , nd.

Proof. By the result of Shu and Yao (Theorem 3.1) (νp(sn))n≥0 is p-regular if and
only if the p-adic strictly analytic functions interpolating the subsequences of (sn)n≥0
have no roots in Zp \ Q. For any such function f , we have νp(f(n)) = O(log n) as
n→∞, because νp(n− θ) = O(log n) when θ ∈ Zp ∩Q. Hence, νp(sn) = O(log n) =
O(nC) for any C ∈ (0, 1). Since (sn)n≥0 is nondegenerate, [34, Theorem 2.3] implies
log |sn| = Ω(n). Therefore, (sn)n≥0 satis�es the assumptions of Theorem 4.20 and the
result follows.

Remark 4.22. In general, the assumption (4.22) of Theorem 4.20 does not hold
when (νp(sn))n≥0 is regular ora (sn)n≥0 is a linear recurrence sequence. Indeed, for
(sn)n≥0 regular Theorem 1.17 shows that sn = O(nC), however usually we cannot
choose C < 1. Similarly, if (sn)n≥0 is a linear recurrence sequence such that one of
the associated p-adic analytic functions has a root in Zp\Q, then the growth of νp(sn)
is hard to control. More precisely, for any function a : N → N it is possible to �nd
θ ∈ Zp \Q such that νp(n− θ) > a(n) in�nitely often. For example, let b0 = 0 and for
n ≥ 0 choose bn+1 arbitrary such that bn+1 > a(pb0 + · · · + pbn). Put θ =

∑∞
n=0 p

bn .
Then for all n ≥ 0 we have νp(pb0 + · · · + pbn − θ) = bn+1 > a(pb0 + · · · + pbn), as
desired.

We now move on to the second family of equations, namely the representation of
the terms of recurrence sequences by quadratic forms. We are mainly interested in
ternary quadratic forms, however for completeness we survey some results for unary
and binary quadratic forms. We note that the methods used in each case are totally
di�erent.

Cohn [20] found that F0 = 0, F1 = F2 = 1, F12 = 144 and L1 = 1, L3 = 4 are
the only perfect squares among the Fibonacci and Lucas numbers, respectively. He
also determined all Fibonacci and Lucas numbers represented by the form 2x2. Since
then, many other authors studied the equation un = dx2, where (un)n≥0 is a binary
recurrence sequence and d a nonzero integer. In particular, Shorey and Stewart [67]
proved that for (un)n≥0 nondegenerate there exist only �nitely many solutions, which
can be bounded by an e�ectively computable constant. For a survey of related results
see [44, 61].

Representation of recurrence sequences by binary quadratic forms has also been
studied by several authors. The results have a di�erent �avor than in the case of
unary forms. Ballot and Luca [6] showed that for in�nitely many d ∈ Z the set
{n > 0 : Fn = |x2 + dy2| for some x, y ∈ Z} has positive lower asymptotic density.
Moreover, they provided an upper bound (depending on t) for the number of such d
with |d| ≤ t. Alba González and Luca [2] gave bounds for the number #{0 ≤ n ≤ t :
Fn = x2 + ny2 for some x, y ∈ Z}. For each p ≡ 1 (mod 4) prime the equation Fp =
x2 + py2 was shown to have a solution x, y ∈ Z by Alba González, Berrizbeitia and
Luca [1]. Berrizbeitia, Chapman, Luca, and Mendoza [9] generalized the investigation
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to Lucas sequences of the �rst kind (un)n≥0 and exhibited binary quadratic forms
representing up or 4up, depending on the residue modulo 4 of a prime p. Ciolan, Luca
and Moree [17] showed that if a third-order linear recurrence sequence (un)n≥0 satis�es
some technical conditions, the number #{0 ≤ n ≤ t : un = x2 + ny2 for some x, y ∈
Z} can be bounded from above by a certain function of t.

To the best of our knowledge, the only equations of this type involving ternary
quadratic forms that have been studied so far are Fn = x2 + y2 + z2 and Ln =
x2 + y2 + z2, as already mentioned in the previous chapter (see [63, 46]). In this case,
it turns out that the set of n such that a representation exists can be given explicitly.
More precisely, Fn is a sum of three squares of integers if and only if

n 6∈ {12l + 10 : l ∈ N} ∪ {4j+1(24l + 21) : j, l ∈ N}.

Moreover, Ln is a sum of three squares of integers if and only if

n 6∈ {24l + i : l ∈ Z, i ∈ {4, 8, 11, 16, 20, 21, 23}}.

Our goal now is to extend the study to the sequences (tn(k))n≥0 with k ≥ 4 even
and other special ternary quadratic forms. We will use the following characterization,
which can be extracted from the paper of Blackwell, Durham, Thompson, and Treece
[11].

Theorem 4.23 (Blackwell, Durham, Thompson, Treece). A nonnegative integer m
is represented by

(a) x2 + y2 + 2z2 if and only if m 6= 4j(16l + 14);

(b) x2 + 2y2 + 2z2 if and only if m 6= 4j(8l + 7);

(c) x2 + 2y2 + 3z2 if and only if m 6= 4j(16l + 10);

(d) x2 + 2y2 + 4z2 if and only if m 6= 4j(16l + 14);

(e) x2 + y2 + 5z2 if and only if m 6= 4j(8l + 3).

Observe that in each case the condition on m can be equivalently stated in terms
of the last nonzero digits `4,2(m). As we will see, a characterization of `4,2(tn(k))
with k ≥ 4 even can be derived using the formula for ν2(tn(k)) given in Theorem 4.2.
Consequently, for each of the quadratic forms listed in Theorem 4.23 it is possible
to determine precisely for which integers n ≥ 0 the term tn(k) is represented by the
given form. We state this as a theorem.

Theorem 4.24. Let k ≥ 4 be an even integer and let q be one of the forms in Theorem
4.23. Then the set

N \ {n ≥ 0 : tn(k) = q(x, y, z) for some x, y, z ∈ Z}

is a union of sets of the form

{2t(k + 1)l + a : l ∈ N}, (4.26)
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and
{2t+2j(k + 1)(8l + b) : j, l ∈ N}, (4.27)

where t, a, b are certain integers such that 1 ≤ t ≤ ν2(k−2)+ 7, 0 ≤ a ≤ 2t(k+1)−1,
and 0 ≤ b ≤ 7.

Proof. Considering k �xed, we write tn instead of tn(k). We will carry out the proof in
the case q(x, y, z) = x2 +y2 +2z2 (only minor details need to be changed for the other
quadratic forms). By Theorem 4.23 we see that an integer s is not represented by q if
and only if `4,2(s) = 14, or equivalently, ν2(s) is odd and `2,3(s) = 7. We are going to
study which terms of each of the subsequences (t2(k+1)m+i)m≥0 with i = 0, 1, . . . , 2k+1
satisfy these conditions.

For i 6= 0 the result is almost immediate. Theorem 4.2 says that the valuation
ν2(t2(k+1)m+i) is odd (and constantly equal to 1) only in the case i = k + 1. By
Corollary 4.8 we see that (t2(k+1)m+k+1)m≥0 is periodic modulo 24 with a period of
length 4. Therefore, the sequence (`2,3(t2(k+1)m+k+1))n≥0 is also periodic with period
4. This is enough to prove that the set of n = 2(k + 1)m+ k + 1 such that tn is not
represented by q, is a union of arithmetic progressions of the form (4.26) (with t ≤ 3).

The case i = 0 is a bit more delicate. We are going to employ the approach using
2-adic analytic functions, similar to the one in Example 3.8. Let P (x) = xk−

∑k−1
j=0 x

j

be the characteristic polynomial of the recurrence relation de�ning (tn)n≥0. Its roots
α1, . . . , αk ∈ C2 all have multiplicity one. To see this we de�ne the polynomial
Q(x) = (x− 1)P (x) = xk+1− 2xk + 1, which has no common roots with its derivative
Q′(x) = (k + 1)xk − 2kxk−1. Therefore, P has only simple roots and we can write

tn =
k∑
j=1

βjα
n
j ,

where β1, ..., βk ∈ C2 satisfy
1 1 · · · 1
α1 α2 · · · αk
...

... · · ·
...

αk−11 αk−12 · · · αk−1k



β1
β2
...
βk

 =


0
1
...
1

 . (4.28)

The equality Q(αj) = 0 gives ν2(αj) = 0, which further implies ν2(α
k+1
j + 1) = 1 and

ν2(α
k+1
j − 1) ≥ 1. It follows that

ν2(α
2(k+1)
j − 1) ≥ 2,

so the function

f(x) =
k∑
j=1

βjα
2(k+1)x
j =

k∑
j=1

βj exp2(x log2(α
2(k+1)
j ))
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is strictly analytic on Z2. We also have

t2(k+1)m = f(m)

for all m ≥ 0.
Expanding the function exp2 into a power series, write

f(x) =
∞∑
i=0

cix
i,

where

ci =
k∑
j=1

βj
logi2(α

2(k+1)
j )

i!
.

The function f obviously satis�es f(0) = 0 and Theorem 4.2 shows that this root is
simple and there are no other roots of f in Z2. Moreover, writing f(x) = xg(x), we
obtain ν2(g(x)) = ν2(k − 2) + 1 for all x ∈ Z2. The conditions equivalent to t2(k+1)m

not being represented by q can thus be restated as

ν2(m) ≡ ν2(k − 2) (mod 2) (4.29)

and
`2,3(m)`2,3(g(m)) ≡ 7 (mod 23). (4.30)

We now examine the set of nonnegative integersm such that these congruences are
satis�ed. From Proposition 3.9 we know that (`2,3(g(m)))m≥0 is a periodic sequence
and has a period equal to a power of 2. Suppose for now that 2T is a period of that
sequence, where T = ν2(k − 2) + 4. We consider two cases.

If m ≡ 0 (mod 2T ), then write m = 2T s for some integer s ≥ 0. We have ν2(m) =
T + ν2(s) and `2,3(m) = `2,3(s). The congruences (4.29) and (4.30) become ν2(s) ≡ 0
(mod 2) and `2,3(s) ≡ 7`−12,3(g(2T )) (mod 8). The set of n = 2(k+1)m = 2T+1(k+1)s
with s satisfying these conditions is of the form (4.27) (with t ≤ ν2(k − 2) + 5).

If m 6≡ 0 (mod 2T ), write m = 2T+2l + 2Tu + v, where l, u, v are integers such
that l ≥ 0, 0 ≤ u ≤ 3, and 0 < v ≤ 2T − 1. In this case we have ν2(m) = ν2(v) and
`2,3(m) = `2,3(2

Tu+v). Hence, for each choice of u, v the set of n = 2(k+1)m with m
satisfying (4.29) and (4.30) is either empty or an arithmetic progression of the form
(4.26) (with t ≤ ν2(k − 2) + 7).

It remains to prove that 2ν2(k−2)+4 is indeed a period of (`2,3(g(m)))m≥0. To
this end, we �rst show that the coe�cients ci of the function f all have nonnega-
tive 2-adic valuation. We begin with the terms containing α2(k+1)x

j . Observe that

ν2(log2(α
2(k+1)
j )) = 2 for j = 1, . . . , k. By Legendre's formula we can then deduce

that ν2(logi2(α
2(k+1)
j )) = 2i ≥ ν2(i!) for all i = 0, 1, . . ..

We move on to the coe�cients βi. The polynomial Q clearly has only simple
roots in the algebraic closure of the two-element �eld F2, hence so does P . This
means that the discriminant D of P is odd. At the same time, D is the square of the
determinant of the Vandermonde matrix appearing in the equation (4.28). It follows
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that this determinant also has 2-adic valuation equal to zero, and hence ν2(βj) ≥ 0
for j = 1, . . . , k. Consequently, ν2(ci) ≥ 0 for all i = 0, 1, . . ..

Now, using (1.8), for any x ∈ Z2 we obtain

g(x+ 2ν2(k−2)+4) = g(x) +
∞∑
i=1

g(i)(x)

i!
2i(ν2(k−2)+4).

Since all the coe�cients of g have nonnegative 2-adic valuation, this is also true for
the functions g(i)(x)/i!. As a result, we get

g(x+ 2ν2(k−2)+4)

2ν2(k−2)+1
≡ g(x)

2ν2(k−2)+1
(mod 23).

Using ν2(g(x)) = ν2(k − 2) + 1 and substituting x = n proves our claim.

We believe that this theorem could be proved without resorting to p-adic analysis,
for example by using the second part of Proposition 4.14. However, the presented
approach is directly applicable to other linear recurrence sequences (sn)n≥0 whose
p-adic valuation is known for some prime p and is p-regular. To conclude this section,
we show an example in which we can make Theorem 4.24 more precise.

Example 4.1. We will determine which terms of the Tetranacci sequence (tn)n≥0 =
(tn(4))n≥0 are not represented by the quadratic form q(x, y, z) = x2 + 2y2 + 2z2.
By Theorem 4.23 these are precisely the terms satisfying ν2(tn) ≡ 0 (mod 2) and
`2,3(tn) = 7.

Inspecting for i = 1, . . . , 9 the subsequences (t10m+i)m≥0 modulo 8 lets us deduce
that tn is not represented by q if n is of the form 10l + 9 or 20l + 16 with l ≥ 0 an
integer.

We now study the remaining subsequence (t10m)m≥0. Following the reasoning in
the proof of Theorem 4.24 we can write

t10m = mg(m),

where g is strictly analytic on Z2 and ν2(g(x)) = 2 for all x ∈ Z2. Moreover, the
argument shows that the sequence (`2,3(g(m)))m≥0 has period 25. This is not the
minimal period, since a direct computation using the values m, t10m for m = 1, . . . , 25

yields

`2,3(g(m)) =


5 if m ≡ 0 (mod 4),

3 if m ≡ 1 (mod 4),

1 if m ≡ 2 (mod 4),

7 if m ≡ 3 (mod 4).

In each case we are looking for m such that

ν2(m) ≡ 0 (mod 2), (4.31)

`2,3(m)`2,3(g(m)) ≡ 7 (mod 8). (4.32)
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If m ≡ 0 (mod 4), then to satisfy the above congruences it must be of the form
m = 4j+1(8l+ 3) with j ≥ 0, l ≥ 0 integers. In the case m ≡ 1 (mod 4) the condition
(4.31) always holds, however m = 8l + 5 satis�es (4.32), while m = 8l + 1 does not.
The case m ≡ 2 (mod 4) contradicts (4.31). Finally, m ≡ 3 (mod 4) contradicts
(4.32).

To sum up, the term tn(4) is not represented by the form x2 + 2y2 + 2z2 if and
only if n belongs to the set

{20l + a : l ∈ N, a ∈ {9, 16, 19}} ∪ {80l + 50 : l ∈ N} ∪ {4j+1(80l + 30) : j, l ∈ N}.
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