Referee’s report for the Habilitation
of Dr. Anna Valette

The material presented by Dr. Anna Valette as the basis for the Habilitation
procedure comes within the theme “Asymptotic sets in real and complex ge-
ometry” and is organized around of 7 papers [A1]-[A7]. (The citations in my
report are the same as in the “Summary of Professional Accomplishments”
provided by A. Valette).

- The first two papers, [Al] and [A2], are related to the Jacobian conjecture
which asserts that any polynomial mapping f: C" — C" with nonzero constant
Jacobian has a polynomial inverse, or equivalently, is proper. Formulated by
Keller 80 years ago, this conjecture is still unsolved although many attempts of
proof were given. In the early 1980s, Wang proved it for polynomials of degree
< 2, and Bass, Connell and Wright showed that if the conjecture is true for
polynomials of degree < 3, then it is true in general. Moh showed that the
conjecture is satisfied for polynomials in 2 variables of degree < 100.

In [Al), A. & G. Valette proposed an interesting new approach. Using a result
of Mostowski (“separation lemma”), they constructed a pseudomanifold N I
associated to a given polynomial mapping f: C* — C™ (Proposition 2.3), and
in the special case where n = 2, they proved that a polynomial mapping
f:C* — C? with nowhere vanishing Jacobian is not proper if and only if the
homology, or the intersection homology, of Ny is nontrivial (Theorem 3.2).

Combined with a previous result of G. Valette, which yields, for any compact
subanalytic pseudomanifold X, an isomorphism between the L cohomology
of the regular part of X and the intersection cochomology in the maximal
perversity of X itself, the theorem above implies that a polynomial mapping
f: €% — C? with nowhere vanishing Jacobian is not proper if and only if the
L* cohomology of the regular locus of NyNBg(0) is nontrivial (Corollary 3.4).
Here, Br(0) denotes a sufficiently large closed ball.

These results were generalized to the n-dimensional case for an arbitrary n in
Theorem 4.5 and Corollary 4.11 of the paper [A2] with Nguyen Thi Bich Thuy.

- In the article [A3], A. & G. Valette presented a new generalized version of the
Sard theorem on a real closed field R. The (well known) semialgebraic version
of Sard’s theorem asserts that the set of critical values of a C* semialgebraic
mapping f: R — R* has dimension < k. (The critical values of f are the
images by f of the elements at which f fails to be a submersion.} Using the
function v of Rabier, which measures the distance of a linear operator to the
set of singular operators, A. & G. Valette introduced in [A3] the notion of



“z-critical value” of a C' semialgebraic mapping f: X — RF, where X C R" is
a bounded semialgebraic manifold. More precisely, y € R* is a z-critical value
if it is the image by f of a point z € X such that v(d,f) < z. Here, 2z € R is
an “infinitesimal”, that is, z is positive and smaller than any positive rational
number. The main theorem of [A3] (Theorem 3.2) is a Sard type theorem for
these critical values. The size of the set of these critical values is estimated
using the notion of “v-thin set” introduced in a previous paper by G. Valette.
Precisely, the theorem says that if v is a convex subgroup of R, then for any
infinitesimal z € v the set of z-critical values of f is v-thin or of dimension
< k.

As an application of this result, A. & G. Valette derived a Sard type theorem
for the “asymptotic critical values” of a C? semialgebraic mapping f: X — RF,
where X is a (not necessarily bounded) C! semialgebraic submanifold of R”.
The set K(f) of “generalized critical values” of f, which is defined by

K(f) = {y € R* | Awi)ien in X, f(z:) = y and (1+ |zi|)v(da, )} — 0},

contains not only the set Ko(f) := {y € R* | 3z € f~{y), v(dsf) = 0} of
critical values of f but also other elements that are called “asymptotic critical
values”. In particular, K(f) contains the set K, (f) of asymptotic critical
values at infinity, which is defined by

Kool f) 1= {y € R* | I(@;)ien in X, |zi| — 00, f(z:) = y and |z;|v(ds, f} — 0},

and if K, (f) denotes the set of asymptotic critical values at the points of X\ X,
which is defined by

K (f) == {y € R* | Aws)ien in X, [z = X\X, f(z:) = v and v{d, f) = 0},

then K(f) = Ko(f)UK{f)UK,(f). Using their version of the Sard theorem
for the z-critical values, A. & G. Valette were able to prove that the set of
asymptotic critical values of a C? semialgebraic mapping f: X — R as above
has dimension < % {Theorem 4.3). A similar result was also obtained by
Kurdyka, Orro and Simon who showed that the set of asymptotic critical
values at infinity has dimension < &.

- The starting point of the paper [A4] is a famous theorem of Hardt which says
that any continuous semialgebraic mapping is locally semialgebraic trivial (i.e.,
admits local semialgebraic trivializations) outside some semialgebraic set of
positive codimension. A Nash (i.e., C™ and semialgebraic} version of this result
was given by Coste and Shiota who proved that any Nash map f: X — R*
on a closed Nash manifold X C R is locally Nash trivial outside some Nash
subset.

It is an important open problem to have a precise description of the bifurcation
set, that is, the smallest set B such that the restriction f: X \ f~}(B) —
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R*\ B is locally trivial. For a C" (r > 2) semialgebraic mapping f: R® — R*,
Kurdyka, Orro and Simon showed that f admits local C" (not necessarily
semialgebraic) trivializations over the complement of the set Ko(f) U Koo(f).
(In particular, the bifurcation set is contained in Ko(f) U Koo(f).) The main
result of [A4] (Theorem 1.2) asserts that a Nash mapping f: X — R* on a
closed Nash manifold X C R" is locally Nash trivial outside the set K(f) of
generalized critical values.

- In [A5], A. Valette proved a generalized version of the Lojasiewicz inequal-
ity about the gradient of a C' globally subanalytic function. The famous
Lojasiewicz inequality says that, given a C! globally subanalytic function-
germ f:(X,a)} — R, with X a globally subanalytic C! submanifold of R”* and
a € X, there exists a neighbourhood U of a in X, a constant C' and a rational
number & € [0, 1) such that for all z € U,

[£(z) = f(@))’ < C|V.fl,
where V, f is the gradient of f at z.

In [A5], A. Valette explored the case where the point a does not belong to X
but lies in its closure. (In particular, e may be a singular point of the closure
of X.) More precisely, if f: X — R is a C! globally subanalytic function
on a bounded C! submanifold X < R™, then, by the Sard theorem for the
asymptotic critical values which we have discussed above (Theorem 4.3 of [A3]),
the set of asymptotic critical values of f is finite. In Theorem 1.3 of [A5],
A. Valette then proved that if K(f} # @, then there exists a rational number
g € (0,1) and a constant C' > 0 such that for all z € X,

dist(f(x), K(f))? < C|V.fl,
where dist is the Euclidean distance.

As a corollary, A. Valette also obtained a Lojasiewicz type inequality for non-
smooth functions which improves a previous result of Bolte, Daniilidis and
Lewis. She showed that if f:R™ — [—00, +00] is a globally subanalytic func-
tion, then the set L; of so-called “asymptotic subcritical values” of f (Defini-
tion 2.5) is finite {Proposition 2.7), and if furthermore this set is not empty,
then there exists a rational number 6 € (0, 1) such that the ratio

dist(f(z), Ls)°
my(z)

is locally bounded near every point of R® (Theorem 2.9), where m;(z) denotes
so-called “nonsmooth slope” of f at z € R® (Definition 2.1).

- In the paper [A6], Kocel-Cynk, Pawlucki and A. Valette proposed a new
proof of the definability of Hausdorff limits (first proved by Brécker, Marker
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and Steinhorn, Pillay, van den Dries, and Lion and Speissegger). To give
a precise statement of this result, let us consider the set K, of all nonempty
compact subsets of R", equipped with the Hausdorff metric, and let us fix an o-
minimal structure expanding the field of real numbers. Hereafter, “definable”
means definable in this o-minimal structure. By definition, a subset A C K,
is called definable if there exists a definable subset T C R* (for some k)
and a definable subset A C R® x T such that A = {A; | ¢ € T}, where
Ay = {z € R" | (z,t) € A}. The result says that the Hausdorff closure
of any definable subset A of K, is definable (Corollary 1). In particular,
the Hausdorff limit of a convergent sequence of subsets of a definable family
A C K, is definable {(Corollary 2). Actually, these are corollaries of the main
theorem of [A6] which says that if 7" is a definable bounded subset of R* and
A is a definable bounded subset of R™ x T such that all the fibers A, (t € T)
are nonempty compact subsets of R™, then there exists a definable bounded
subset S C R* and a definable Lipschitz bijection :S — T such that the
mapping s € § = Ay € K, is Lipschitz, and hence, extends in a unique way
by continuity to S.

The techniques developed in [A6] turned out to be useful not only to prove the
theorem above but also for other purposes. Especially, Proposition 1 {about
Lipschitz parametrizations of definable families of Lipschitz functions) was
used by G. Valette and N. Nguyen to improve the o-minimal preparation the-
orem of van den Dries and Speissegger, and as a consequence, to establish the
existence of Lipschitz stratifications in the sense of Mostowski for sets which
are definable in a polynomially bounded o-minimal structure expending the
real field.

In the paper [A7], still developing the techniques of [A6], Kocel-Cynk, Pawhucki
and A. Valette gave, in the case of an arbitrary o-minimal structure expanding
a real closed field R, a new proof of so-called “uniform CP-parametrization
theorem” due to Yomdin and Gromov in the semialgebraic case. Another
proof, by different methods, in an arbitrary o-minimal structure, was given by
Pila and Wilkie.

*

Apart from the series of articles [A1]-[A7] which serves as a basis for the Habil-
itation procedure, A. Valette is also the author of another collection of works
(presented as “Other Scientific Achievements” in the “Summary of Professional
Accomplishments”) consisting of 5 papers [B1]-[B5], and 3 preprints [C1]-[C3]
(not available in the application file).

- In the series of papers [B1, B3, B4], A. Valette investigated the set J; of points
at which a given polynomial mapping f is not proper (so-called “asymptotic
set” or “Jelonek set” of f). The study of this set is important and directly



related to the Jacobian conjecture, which reduces to show that the Jelonek
set of a polynomial mapping f: C* — C™ with nonzero constant Jacobian is
empty.

The starting point is a theorem of Jelonek which says that if f:C* - C*is a
dominant polynomial mapping, then the set J; is either empty or a C-uniruled
hypersurface (i.e., it is dominated by a cylinder). Later, Jelonek gave versions
of this result for polynomial mappings between complex affine varieties, and
also investigated the case of real polynomial mappings.

In the case of an arbitrary algebraically closed field & (of any characteristic),
Jelonek showed that the set J } of points at which a generically finite polynomial
mapping f: k™ — £™ is not finite is either empty or a variety of pure dimension
n — 1, and in Theorem 4.1 of {B3], A. Valette proved that this set is also k-
uniruled. The notion of finite map is the natural algebraic counterpart of the
notion of proper map. In the complex case, the set J} of points at which a
polynomial mapping f is not finite coincides with the Jelonek set J; of points
at which f is not proper, and hence, is also referred to as the Jelonek set.

In [B1] (Theorem 4), A. Valette also gave a method to compute effectively the
ideal of the set J} of a given dominant polynomial mapping f: X — Y betwen
affine irreducible varieties X C k™ and ¥ C k™.

In the real case, the situation is more complicated, and so far there is no
satisfactory such a general method. In [B4], however, A. Valette presented a
generically effective method to determine the Jelonek set J; of a given poly-
nomial mapping f:R? —» R? with finite fibers. She showed that in this case
J; is equal to the support of an algebraically constructible function which can
be generically obtained effectively (Theorem 3.3). As an important corollary
of Theorem 3.3, she obtained that if the number of points in each fiber of f
over some open set U C R? is constant, then f is proper at U (Corollary 3.4).

- The paper [B2] is on the Noether exponent. The Noether exponent of an ideal
I C k[Xy,..., X, (k algebraically closed) is the smallest number g such that
(rad I)* C I. An estimate of this exponent was obtained by Kolldr. Later, us-
ing simpler methods, several authors contributed to this problem, especially in
the case where the ideal [ has no embedded primary components. In Theorem
7 of [B2], A. Valette obtained in this special case a sharper estimate.

- Finally, in the paper [B5], by Bilski, Kucharz, G. & A. Valette, it is proved
that any pre-algebraic F-vector bundle (F = R, C or H) on an affine real al-
gebraic variety X can be made algebraic after finitely many blowups. More
precisely, if £ is a pre-algebraic F-vector bundle on X, then there exists a reg-
ular birational map #: X’ — X which is the composition of a finite number
of blowups with nonsingular centers (so-called “multiblowup”) such that X’ is



nonsingular and the pullback F-vector bundle 7*¢ on X’ is algebraic {Theorem
1.1). If furthermore X is nonsingular, then there exists a Zariski closed subset
Z C X of codimension > 2 such that the restriction &|x\z is an algebraic
F-vector bundle on X \ Z (Corollary 1.2). In particular, any pre-algebraic
F-vector bundle on an I-dimensional such a nonsingular variety X is alge-
braic {Corollary 1.3). The “regulous” maps introduced by Fichou, Huisman,
Mangolte and Monnier play an essential role in the proof.

As an application, Bilski, Kucharz, G. & A. Valette also proved that if X is
a compact nonsingular affine real algebraic variety, then the Stiefel-Whitney
classes of any pre-algebraic R-vector bundle on X are algebraic (Theorem 3.2).
This extends to pre-algebraic R-vector bundles a well known property of alge-
braic R-vector bundles. Another well known fact about algebraic vector bun-
dles is that the Chern classes of any algebraic C-vector bundle on X and the
Pontryagin classes of any algebraic R-vector bundle on X are C-algebraic. Ex-
amples showing that this property cannot be extended to pre-algebraic vector
bundles are given in Example 5.2 of {B5]. However, it is proved, in Theorem
5.7, that the Chern classes of any pre-algebraic C-vector bundle on X and
the Pontryagin classes of any pre-algebraic R-vector bundle on X are blow-
C-algebraic (i.e., they can be made C-algebraic by pulling them back by a
suitable multiblowup).

#

In conclusion, the articles presented by Dr. Anna Valette, both for the Habilita-
tion procedure and as “Other Scientific Achievements,” represent an important
and original contribution to various and difficult areas of complex algebraic
geometry as well as real algebraic and analytic geometry. The techniques de-
veloped in these articles clearly show a thorough knowledge of A. Valette in
these domains of mathematics.

In my opinion, the material presented satisfies all the conditions required for
Dr. Anna Valette to receive the Habilitation of the Jagiellonian University.
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