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Chapter I: This part of the thesis deals mainly with the Bergman kernel and
the Bergman metric. ' '

Part 1.1 deals with an effective formula of the Bergman metric for the sym-
metrized bidisc. The proof is based on the observation by Misra, Roy, and Zhang
that the Schur polynomials establish an orthonormal basis for A%(G,) and the
Jacobi-Trudy identities (where the conjugate partition is used here is not clear).
It finally leads to calculate the operator norm of some linear operator A on an
¢%-sequence space. It should be emphasized that the method of proof here is not
based on an intense work with the square integrable holomorphic functions on Gs.
Although the Bergman kernel is known the argument used here avoids a perhaps
long calculation of the derivatives of log Kg,. It is substituted by a clever functional
analysis method. )

The choice of the variables s; seems to be not optimal since the elementary
symmetric polynomials carry the same letters.

It remains unclear whether this kind of approach also leads to effective formulas
in the case of G,,, n > 2, or even more, whether it can be also used for other
situations.

Part 1.2 presents a variation of Bell's transformation formula for proper holo-
morphic mappings.

Part 1.3 investigates the Lu Qi-Keng. problem for the tetrablock E. It turns
out that E is not a Lu Qi-Keng domain but it is the proper image of a Lu Qi-Keng
domain, namely the domain of all symmetric 2 x 2 matrices with norm less than
1. Effective zeros of Kg are given. The result is a consequence of Bell’s result from
the part before.

Part 1.4 contains a generalization of a result of Rudin which allows to conclude
that a certain holomorphic mapping I : D — C", D C C", is automatically proper
onto its open images. The main tool here consists of a finite group U of topological
transformations of D for which F' is precisely U-invariant, i.e. F'(z) = F(w) if and

only if there is a U € U with U(z) = w. Here the situation is studied when the
domain above is given by the following Hartogs domain G := {(z,w) € Ckx D :
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|z;] < ¢j(w),7 =1,...,k}, where ; are positive continuous functions on D, and
the mapping is the following one: G 3 (z,w) — (z, F(w)). Applications are given
only for £ = 0. The case k = 1 i$ mentioned without details.

The sense of such a result is to avoid the ad hoc proofs that the mapping defining
the symmetrized polydisc is a proper one.

Summarizing: The parts so far deal with the Bergman metric and properties of
special domains which have appeared during the study of p-synthesis. The most
interesting part is Part 1.1 because of the new method used to get the Bergman
metric. ‘

Part 1.5 is the main and most difficult part in this chapter. Tt deals with the
Bergman distance for plane domains. ‘

The comments after Lemma 1.5.4 that the estimate (1.5.2) is quite natural needs
a stronger reasoning in case it is true.

The goal of this part is to continue investigations done by Nikolov for Dini-
smooth bounded plane domains. Nikolov has given lower and upper estimates for
the Carathéodory distance cp(z,w), resp. the Kobayashi distance kp(z,w), in
terms of the Euclidean distance |z — w| of the involved points and their boundary
distances dp(z) and dp(w). The study of the Bergman distance remained open.
This gap is now closed by the result stated in Proposition 1.5.8, resp. Proposition
1.5.10. :

The main tools used to prove these results are a localization result for the
Kobayashi-Royden metric near a strictly pseudoconvex boundary point due to
Forstneric-Rosay and a deep result of Balogh-Bonk on a strictly pseudoconvex do-
main D in C?, n > 2. The last one states a lower /upper estimate for the integrated
form of a pseudometric that satisfies certain boundary behavior in terms of the
so-called Carnot-Carathéodory metric on D and the distances to the boundary of
D. In particular, the assumptions needed in the Balogh-Bonk result are fulfilled
for the Kobayashi-Royden metric on a strictly pseudoconvex domain (in particular,
the unit ball) and for a somehow modified Kobayashi-Royden pseudometric on the
ball. Hence, the result can be applied.

The proof seems to be correct. Nevertheless, the way it is presented needs some
comments. After the first reduction it is unclear whether the use of Warschawski’s
Theorem for a boundary point p of D gives a uniform estimate in the constants in-
volved in dp(z) ~ dp(F(2)); note that the construction heavily depends on p. Note
also that 7o depends on p. The first paragraph in the proof is simply superfluous;
only r,ry,7r9, and rs are needed. More, it seems that r is the same as 7.

Recall that Nikolov proved that for a finitely connected plane domain (with-
out isolated boundary points) the quotient ;—g%ﬁ% tends to one if w tends to the
boundary and z remains in some compact part of D (in fact, the convergence is
uniform in z). A similar result is known for strongly pseudoconvex domains due to
Venturini. Now, in the thesis a similar boundary behavior is given for the quotient
%‘g— and %g—.



Summarizing: Theorem 1.5.8 is the most important result here. And the idea to
use the Balogh-Bonk result proves the author’s abilily to find the correct and even
unusual tools overcoming the problems for the Bergman case.

Part 1.6 contains some minor contributions improving results by Costara.
Chapter II: It deals mainly with the Kobayashi pseudodistance.

Part 2.1 discusses the size of the £p, kp, and ep-balls for domains D, which are
convex or C-convex and do not contain any complex line. The main tool used here
is the so—called minimal basis at a point of D which was introduced by McNeal in
1992, The main result may be described as follows.

Let D € C™ be a domain with no complex lines inside and fix a pomt qg € D.
Assume that the standard base ey, ..., e, of C" is minimal for D at q, i.e.

g+dp(g)e; € 9D, g+ dp,(q)es € BD, qg+dp, (q)e;; € 9D etc., where D := D,
Dy == {(22,...,20) € C""! : (g,20,...,2,) € D}, Dy := {z3,... 2 € €2
(g1, 92,23, ++ , 20) € D}, etc. ,

Write 7; := dp,(g) and 7 := (71,...,7,) and note that Tj € Tj+1. Then the
result reads as:

1) if D is linearly convex and if z € C™ with max{lz’ q’l} <

and £p(z,q) <7 :
2) if D is convex and 1f z € D with cD(q, z) < r, then max{‘iﬂi‘—l} <e?~1;

n(e2’+1)’ thenze D

3) if D is C-convex and if z € D with ¢p(z,q) < r, then ma,x{tL} <etr—1.

In particular, the Kobayashi ball By, (g,r) contains a certain po]ydm(‘ and is
contained in another one and the corresponding multiradii are given in terms of 7.

The proof of Theorem 2.1.3 heavily depends on Lemma 2.1.4 in which lower
estimates are given for ¢p in the above situation of D. Its proof uses Koebes
1/4- theorem together with a clever relation between a new ad hoc distance, its
integrated form and their relations.

Besides of Lemma 2.1.4 (NOT Lemma 2.1.5 as stated in the text) a specific co-
ordinate transform (exploiting C-convexity) and the product property leads finally
to the proof of Theorem 2.1.3.

The formulation of Theorem 2.1.6 is less precise. By assumption, U N D is
weakly linearly convex, convex or C-convex but it remains unclear which are the
precise requirements for q, z. It seems that some localization result has to be used
in order to understand the required assumption. Therefore, the author’s statement
that Theorem 2.1.6 is “merely an application of Theorem 2.1.3” is far from being
obvious. In fact, such a statement violates in some sense the very positive judgement
of the former extremely clear representation of Theorem 2.1.3.

Part 2.2 deals with Gromov hyperbolicity. It remains unclear why the study of
this kind of hyperbolicity is important in Complex Analysis.

There are two definitions of d-hyperbolic formulated. The first one is formulated
for geodesic spaces and deal with the size of geodesic triangles. The second notion
works in any metric space (X,d) and is defined via the so-called Gromov product.
If S(p, g, z,w) < 20 for all p,q,z,w € X, X is said §-hyperbolic (it seems that the
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notion d-Gromov hyperbolicity should be the correct one in order to distinguish
from the one above). ; .

In the case that (X, d) is an intrinsic metric space, it is mentioned that both
notions are the same. Why an intrinsic metric space is a geodesic metric space 7
In any case it should be emphasized that for a domain D C C" the space (D, kp)
is intrinsic or in other words, kp is an inner distance.

Unclear is the statement of Corollary 2.2.6 and the role of Example 2.2.7.

To apply Theorem 2.2.8 the author quotes Theorem 12 from NPZ-2, in which
a comparison is given between the Carathéodory-Reiffen, the Bergman, and the
Kobayashi-Royden-metric. After integration one ends up with a comparison be-
tween the inner Carathéodory, the Kobayashi and the Bergman distance. There-
fore, ¢%, kp, and bp are bilipschitz equivalent. Why is the same true for cp as it
is needed 7

After this kind of introduction general results are given. The first one states
that, in general, Gromov hyperbolicity fails for the Cartesian product X; x Xs
with d := max{dy,ds}, if both factors (X;,d;) have infinite distances and (X, d;)
is intrinsic. Or more precise, the product is Gromov hyperbolic if and only if one
factor is Gromov hyperbolic and the other has a bounded distaice. In particular,
the bidisc is not Gromov hyperbolic with respect to the Kobayashi distance.

Moreover, it is shown that also the symmetrized polydisc is not Gromov hyper-
bolic for ¢, k and that the symmetrized bidisc is not Gromov hyperbolic for b. The
idea of the proof is to study the Gromov property for certain images of points on the
“diagonal” of the polydisc. Without proof it is also mentioned that the tetrablock
is not Gromov hyperbolic. '

The main and the most difficult part in this section deals with the question which
influence the existence of an analytic disc in the boundary of a convex domain D
may have with respect to Gromov hyperbolicity. Such a result was proved in case
that D has a Cw—bouﬁdary (see Gaussier-Seshadri). Here the author gives the
following result: if D € C? is convex, without a complex line, if the boundary is of
class C1!, and if D contains an analytic disc, then D is not Gromov hyperbolic
for kp. Is remains open, what happens in case n > 2 ( see also the Remark 2.2.16).

While Gaussier-Seshadri argue via general results from the Gromov theory, the
author here gives a direct proof exploiting only the geometry of D and estimates
for the Kobayashi distance. The reasoning is very tricky and absolutely non trivial.
In some geometric argument more details (instead of some kind ol hand-waving)
would be helpful for understanding.

It should be mentioned that there-are two papers by Zimmer in which very
general results for C-convex domains in this context are proved. I am wondering
why the author is not quoting these two papers.

In Theorem 2.2.17 non Gromov hyperbolicity is related to some type conditions
(in the sense of D’Angelo) of the boundary of D; note that the boundary is not
assumed to be of class C*® but locally of class C''. The proof is based on very
nice, non trivial geometric investigations together with estimates of the Kobayashi
distance.



Simple examples may show that there are Gromov hyperbolic domains which
are nol pseudoconvex. Take, for example, the unit ball minus some thin subset.
The author shows that there are even smooth bounded domains which are not
pseudoconvex but Gromov hyperbolic. Take a strictly pseudoconvex domain G and
a subdomain D CC G with C*-boundary such that at any of its boundary points
its Levi form has at least one positive eigenvalue. Then G'\ D is not pseudoconvex,
but nevertheless it is Gromov hyperbolic for k. The main reason for this positive
result is that kg — kg\p is bounded on (G \ D)% To see this, mainly a result by
Krantz is used which describes the boundary behavior of the Kobayashi-Royden
metric in direction of the normal vector.

A similar result remains true if D is replaced by a polycyhndcr

Swmmarizing: this part of the thesis is highly non trivial; it contains besides a
clever use of estimates for the Kobayashi distance a lot of tricky geometric ideas.

Part 2.3 contains an effective formula of the Carathéodory-Reiffen metric for
the symmetrized bidisc (at points (0,p), 0 < p < 1) exploiting the more abstract
formula due to Costara and Agler-Young. The proof consists of some simple calcu-
lations. Nevertheless, the formula shows how complicated concrete formulas may
look like. The Remark 2.3.3 emphasizes that yg,((0,p); (1,-)) is not differentiable
but, of course, there are much simpler examples with this kind of phenomena
e.g. the bidisc. See also the first paragraph on page 46.

Summary: The author of this thesis proves her high mathematical ability to
solve non trivial problems in the field of geometric complex analysis. The proofs
definitely show that she is able to combine her intensive knowledge about the invari-
ant functions together with original nice geometric ideas. Hence there is no doubt
that the thesis satisfies all requirements to get a Ph.D. in mathematics. Neverthe-
less, the way the thesis is written is far from being optimal. The representation
could have been improved in an essential way. So my final conclusion using the
traditional notes for a PhD thesis is to evaluate this work with the note magna
cum laude.




